Spaces:
Runtime error
Runtime error
Commit
·
f3ea76e
1
Parent(s):
c88b154
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, EsmForMaskedLM
|
3 |
+
import torch
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
|
8 |
+
def generate_heatmap(protein_sequence, start_pos=1, end_pos=None):
|
9 |
+
# Load the model and tokenizer
|
10 |
+
model_name = "facebook/esm2_t6_8M_UR50D"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = EsmForMaskedLM.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Tokenize the input sequence
|
15 |
+
input_ids = tokenizer.encode(protein_sequence, return_tensors="pt")
|
16 |
+
sequence_length = input_ids.shape[1] - 2 # Excluding the special tokens
|
17 |
+
|
18 |
+
# Adjust end position if not specified
|
19 |
+
if end_pos is None:
|
20 |
+
end_pos = sequence_length
|
21 |
+
|
22 |
+
# List of amino acids
|
23 |
+
amino_acids = list("ACDEFGHIKLMNPQRSTVWY")
|
24 |
+
|
25 |
+
# Initialize heatmap
|
26 |
+
heatmap = np.zeros((20, end_pos - start_pos + 1))
|
27 |
+
|
28 |
+
# Calculate LLRs for each position and amino acid
|
29 |
+
for position in range(start_pos, end_pos + 1):
|
30 |
+
# Mask the target position
|
31 |
+
masked_input_ids = input_ids.clone()
|
32 |
+
masked_input_ids[0, position] = tokenizer.mask_token_id
|
33 |
+
|
34 |
+
# Get logits for the masked token
|
35 |
+
with torch.no_grad():
|
36 |
+
logits = model(masked_input_ids).logits
|
37 |
+
|
38 |
+
# Calculate log probabilities
|
39 |
+
probabilities = torch.nn.functional.softmax(logits[0, position], dim=0)
|
40 |
+
log_probabilities = torch.log(probabilities)
|
41 |
+
|
42 |
+
# Get the log probability of the wild-type residue
|
43 |
+
wt_residue = input_ids[0, position].item()
|
44 |
+
log_prob_wt = log_probabilities[wt_residue].item()
|
45 |
+
|
46 |
+
# Calculate LLR for each variant
|
47 |
+
for i, amino_acid in enumerate(amino_acids):
|
48 |
+
log_prob_mt = log_probabilities[tokenizer.convert_tokens_to_ids(amino_acid)].item()
|
49 |
+
heatmap[i, position - start_pos] = log_prob_mt - log_prob_wt
|
50 |
+
|
51 |
+
# Visualize the heatmap
|
52 |
+
plt.figure(figsize=(15, 5))
|
53 |
+
plt.imshow(heatmap, cmap="viridis_r", aspect="auto")
|
54 |
+
plt.xticks(range(end_pos - start_pos + 1), list(protein_sequence[start_pos-1:end_pos]))
|
55 |
+
plt.yticks(range(20), amino_acids)
|
56 |
+
plt.xlabel("Position in Protein Sequence")
|
57 |
+
plt.ylabel("Amino Acid Mutations")
|
58 |
+
plt.title("Predicted Effects of Mutations on Protein Sequence (LLR)")
|
59 |
+
plt.colorbar(label="Log Likelihood Ratio (LLR)")
|
60 |
+
plt.show()
|
61 |
+
|
62 |
+
# Save the plot to a temporary file and return the file path
|
63 |
+
temp_file = "temp_heatmap.png"
|
64 |
+
plt.savefig(temp_file)
|
65 |
+
plt.close()
|
66 |
+
return temp_file
|
67 |
+
|
68 |
+
def heatmap_interface(sequence, start, end):
|
69 |
+
# Ensure start and end positions are within bounds
|
70 |
+
if start < 1 or end > len(sequence):
|
71 |
+
return "Start or end position is out of bounds."
|
72 |
+
|
73 |
+
# Generate heatmap
|
74 |
+
heatmap_path = generate_heatmap(sequence, start, end)
|
75 |
+
return heatmap_path
|
76 |
+
|
77 |
+
# Define the Gradio interface
|
78 |
+
iface = gr.Interface(
|
79 |
+
fn=heatmap_interface,
|
80 |
+
inputs=[
|
81 |
+
gr.Textbox(lines=2, placeholder="Enter Protein Sequence Here..."),
|
82 |
+
gr.Number(label="Start Position", default=1),
|
83 |
+
gr.Number(label="End Position")
|
84 |
+
],
|
85 |
+
outputs="image",
|
86 |
+
live=True
|
87 |
+
)
|
88 |
+
|
89 |
+
# Run the Gradio app
|
90 |
+
iface.launch()
|