Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -79,6 +79,51 @@ elif menu == "Parsing NLU data into SQuAD 2.0":
|
|
79 |
]
|
80 |
}
|
81 |
````
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
''')
|
83 |
|
84 |
|
|
|
79 |
]
|
80 |
}
|
81 |
````
|
82 |
+
|
83 |
+
The next step is to run the `atis.py` script from the [QA-NLU Amazon Research repository](https://github.com/amazon-research/question-answering-nlu).
|
84 |
+
That script will produce a json file that looks like this:
|
85 |
+
|
86 |
+
````
|
87 |
+
{
|
88 |
+
"version": 1.0,
|
89 |
+
"data": [
|
90 |
+
{
|
91 |
+
"title": "MultiATIS++",
|
92 |
+
"paragraphs": [
|
93 |
+
{
|
94 |
+
"context": "yes. no. i am looking for some vietnamese food",
|
95 |
+
"qas": [
|
96 |
+
{
|
97 |
+
"question": "did they ask for a restaurant?",
|
98 |
+
"id": "49f1180cb9ce4178a8a90f76c21f69b4",
|
99 |
+
"is_impossible": false,
|
100 |
+
"answers": [
|
101 |
+
{
|
102 |
+
"text": "yes",
|
103 |
+
"answer_start": 0
|
104 |
+
}
|
105 |
+
],
|
106 |
+
"slot": "",
|
107 |
+
"intent": "restaurant"
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"question": "did they ask for music?",
|
111 |
+
"id": "a7ffe039fb3e4843ae16d5a68194f45e",
|
112 |
+
"is_impossible": false,
|
113 |
+
"answers": [
|
114 |
+
{
|
115 |
+
"text": "no",
|
116 |
+
"answer_start": 5
|
117 |
+
}
|
118 |
+
],
|
119 |
+
"slot": "",
|
120 |
+
"intent": "restaurant"
|
121 |
+
},
|
122 |
+
... <More questions>
|
123 |
+
````
|
124 |
+
|
125 |
+
There are many tunable parameters when generating the above file, such as how many negative examples to include per question. Follow the same process for training a slot-tagging model.
|
126 |
+
|
127 |
''')
|
128 |
|
129 |
|