Delete DOCUMENTATION.md
Browse files- DOCUMENTATION.md +0 -335
DOCUMENTATION.md
DELETED
|
@@ -1,335 +0,0 @@
|
|
| 1 |
-
# MediSync: Multi-Modal Medical Analysis System
|
| 2 |
-
|
| 3 |
-
## Comprehensive Technical Documentation
|
| 4 |
-
|
| 5 |
-
### Table of Contents
|
| 6 |
-
1. [Introduction](#introduction)
|
| 7 |
-
2. [System Architecture](#system-architecture)
|
| 8 |
-
3. [Installation](#installation)
|
| 9 |
-
4. [Usage](#usage)
|
| 10 |
-
5. [Core Components](#core-components)
|
| 11 |
-
6. [Model Details](#model-details)
|
| 12 |
-
7. [API Reference](#api-reference)
|
| 13 |
-
8. [Extending the System](#extending-the-system)
|
| 14 |
-
9. [Troubleshooting](#troubleshooting)
|
| 15 |
-
10. [References](#references)
|
| 16 |
-
|
| 17 |
-
---
|
| 18 |
-
|
| 19 |
-
## Introduction
|
| 20 |
-
|
| 21 |
-
MediSync is a multi-modal AI system that combines X-ray image analysis with medical report text processing to provide comprehensive medical insights. By leveraging state-of-the-art deep learning models for both vision and language understanding, MediSync can:
|
| 22 |
-
|
| 23 |
-
- Analyze chest X-ray images to detect abnormalities
|
| 24 |
-
- Extract key clinical information from medical reports
|
| 25 |
-
- Fuse insights from both modalities for enhanced diagnosis support
|
| 26 |
-
- Provide comprehensive visualization of analysis results
|
| 27 |
-
|
| 28 |
-
This AI system demonstrates the power of multi-modal fusion in the healthcare domain, where integrating information from multiple sources can lead to more robust and accurate analyses.
|
| 29 |
-
|
| 30 |
-
## System Architecture
|
| 31 |
-
|
| 32 |
-
MediSync follows a modular architecture with three main components:
|
| 33 |
-
|
| 34 |
-
1. **Image Analysis Module**: Processes X-ray images using pre-trained vision models
|
| 35 |
-
2. **Text Analysis Module**: Analyzes medical reports using NLP models
|
| 36 |
-
3. **Multimodal Fusion Module**: Combines insights from both modalities
|
| 37 |
-
|
| 38 |
-
The system uses the following high-level workflow:
|
| 39 |
-
|
| 40 |
-
```
|
| 41 |
-
βββββββββββββββββββ
|
| 42 |
-
β X-ray Image β
|
| 43 |
-
ββββββββββ¬βββββββββ
|
| 44 |
-
β
|
| 45 |
-
βΌ
|
| 46 |
-
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
|
| 47 |
-
β Preprocessing βββββΆβ Image Analysis βββββΆβ β
|
| 48 |
-
βββββββββββββββββββ βββββββββββββββββββ β β
|
| 49 |
-
β Multimodal β
|
| 50 |
-
βββββββββββββββββββ βββββββββββββββββββ β Fusion βββββΆ Results
|
| 51 |
-
β Medical Report βββββΆβ Text Analysis βββββΆβ β
|
| 52 |
-
βββββββββββββββββββ βββββββββββββββββββ β β
|
| 53 |
-
βββββββββββββββββββ
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
## Installation
|
| 57 |
-
|
| 58 |
-
### Prerequisites
|
| 59 |
-
- Python 3.8 or higher
|
| 60 |
-
- Pip package manager
|
| 61 |
-
|
| 62 |
-
### Setup Instructions
|
| 63 |
-
|
| 64 |
-
1. Clone the repository:
|
| 65 |
-
```bash
|
| 66 |
-
git clone [repository-url]
|
| 67 |
-
cd mediSync
|
| 68 |
-
```
|
| 69 |
-
|
| 70 |
-
2. Install dependencies:
|
| 71 |
-
```bash
|
| 72 |
-
pip install -r requirements.txt
|
| 73 |
-
```
|
| 74 |
-
|
| 75 |
-
3. Download sample data:
|
| 76 |
-
```bash
|
| 77 |
-
python -m mediSync.utils.download_samples
|
| 78 |
-
```
|
| 79 |
-
|
| 80 |
-
## Usage
|
| 81 |
-
|
| 82 |
-
### Running the Application
|
| 83 |
-
|
| 84 |
-
To launch the MediSync application with the Gradio interface:
|
| 85 |
-
|
| 86 |
-
```bash
|
| 87 |
-
python run.py
|
| 88 |
-
```
|
| 89 |
-
|
| 90 |
-
This will:
|
| 91 |
-
1. Download sample data if not already present
|
| 92 |
-
2. Initialize the application
|
| 93 |
-
3. Launch the Gradio web interface
|
| 94 |
-
|
| 95 |
-
### Web Interface
|
| 96 |
-
|
| 97 |
-
MediSync provides a user-friendly web interface with three main tabs:
|
| 98 |
-
|
| 99 |
-
1. **Multimodal Analysis**: Upload an X-ray image and enter a medical report for combined analysis
|
| 100 |
-
2. **Image Analysis**: Upload an X-ray image for image-only analysis
|
| 101 |
-
3. **Text Analysis**: Enter a medical report for text-only analysis
|
| 102 |
-
|
| 103 |
-
### Command Line Usage
|
| 104 |
-
|
| 105 |
-
You can also use the core components directly from Python:
|
| 106 |
-
|
| 107 |
-
```python
|
| 108 |
-
from mediSync.models import XRayImageAnalyzer, MedicalReportAnalyzer, MultimodalFusion
|
| 109 |
-
|
| 110 |
-
# Initialize models
|
| 111 |
-
fusion_model = MultimodalFusion()
|
| 112 |
-
|
| 113 |
-
# Analyze image and text
|
| 114 |
-
results = fusion_model.analyze("path/to/image.jpg", "Medical report text...")
|
| 115 |
-
|
| 116 |
-
# Get explanation
|
| 117 |
-
explanation = fusion_model.get_explanation(results)
|
| 118 |
-
print(explanation)
|
| 119 |
-
```
|
| 120 |
-
|
| 121 |
-
## Core Components
|
| 122 |
-
|
| 123 |
-
### Image Analysis Module
|
| 124 |
-
|
| 125 |
-
The `XRayImageAnalyzer` class is responsible for analyzing X-ray images:
|
| 126 |
-
|
| 127 |
-
- Uses the DeiT (Data-efficient image Transformers) model fine-tuned on chest X-rays
|
| 128 |
-
- Detects abnormalities and classifies findings
|
| 129 |
-
- Provides confidence scores and primary findings
|
| 130 |
-
|
| 131 |
-
Key methods:
|
| 132 |
-
- `analyze(image_path)`: Analyzes an X-ray image
|
| 133 |
-
- `get_explanation(results)`: Generates a human-readable explanation
|
| 134 |
-
|
| 135 |
-
### Text Analysis Module
|
| 136 |
-
|
| 137 |
-
The `MedicalReportAnalyzer` class processes medical report text:
|
| 138 |
-
|
| 139 |
-
- Extracts medical entities (conditions, treatments, tests)
|
| 140 |
-
- Assesses severity level
|
| 141 |
-
- Extracts key findings
|
| 142 |
-
- Suggests follow-up actions
|
| 143 |
-
|
| 144 |
-
Key methods:
|
| 145 |
-
- `extract_entities(text)`: Extracts medical entities
|
| 146 |
-
- `assess_severity(text)`: Determines severity level
|
| 147 |
-
- `extract_findings(text)`: Extracts key clinical findings
|
| 148 |
-
- `suggest_followup(text, entities, severity)`: Suggests follow-up actions
|
| 149 |
-
- `analyze(text)`: Performs comprehensive analysis
|
| 150 |
-
|
| 151 |
-
### Multimodal Fusion Module
|
| 152 |
-
|
| 153 |
-
The `MultimodalFusion` class combines insights from both modalities:
|
| 154 |
-
|
| 155 |
-
- Calculates agreement between image and text analyses
|
| 156 |
-
- Determines confidence-weighted findings
|
| 157 |
-
- Provides comprehensive severity assessment
|
| 158 |
-
- Merges follow-up recommendations
|
| 159 |
-
|
| 160 |
-
Key methods:
|
| 161 |
-
- `analyze_image(image_path)`: Analyzes image only
|
| 162 |
-
- `analyze_text(text)`: Analyzes text only
|
| 163 |
-
- `analyze(image_path, report_text)`: Performs multimodal analysis
|
| 164 |
-
- `get_explanation(fused_results)`: Generates comprehensive explanation
|
| 165 |
-
|
| 166 |
-
## Model Details
|
| 167 |
-
|
| 168 |
-
### X-ray Analysis Model
|
| 169 |
-
|
| 170 |
-
- **Model**: facebook/deit-base-patch16-224-medical-cxr
|
| 171 |
-
- **Architecture**: Data-efficient image Transformer (DeiT)
|
| 172 |
-
- **Training Data**: Chest X-ray datasets
|
| 173 |
-
- **Input Size**: 224x224 pixels
|
| 174 |
-
- **Output**: Classification probabilities for various conditions
|
| 175 |
-
|
| 176 |
-
### Medical Text Analysis Models
|
| 177 |
-
|
| 178 |
-
- **Entity Recognition Model**: samrawal/bert-base-uncased_medical-ner
|
| 179 |
-
- **Classification Model**: medicalai/ClinicalBERT
|
| 180 |
-
- **Architecture**: BERT-based transformer models
|
| 181 |
-
- **Training Data**: Medical text and reports
|
| 182 |
-
|
| 183 |
-
## API Reference
|
| 184 |
-
|
| 185 |
-
### XRayImageAnalyzer
|
| 186 |
-
|
| 187 |
-
```python
|
| 188 |
-
from mediSync.models import XRayImageAnalyzer
|
| 189 |
-
|
| 190 |
-
# Initialize
|
| 191 |
-
analyzer = XRayImageAnalyzer(model_name="facebook/deit-base-patch16-224-medical-cxr")
|
| 192 |
-
|
| 193 |
-
# Analyze image
|
| 194 |
-
results = analyzer.analyze("path/to/image.jpg")
|
| 195 |
-
|
| 196 |
-
# Get explanation
|
| 197 |
-
explanation = analyzer.get_explanation(results)
|
| 198 |
-
```
|
| 199 |
-
|
| 200 |
-
### MedicalReportAnalyzer
|
| 201 |
-
|
| 202 |
-
```python
|
| 203 |
-
from mediSync.models import MedicalReportAnalyzer
|
| 204 |
-
|
| 205 |
-
# Initialize
|
| 206 |
-
analyzer = MedicalReportAnalyzer()
|
| 207 |
-
|
| 208 |
-
# Analyze report
|
| 209 |
-
results = analyzer.analyze("Medical report text...")
|
| 210 |
-
|
| 211 |
-
# Access specific components
|
| 212 |
-
entities = results["entities"]
|
| 213 |
-
severity = results["severity"]
|
| 214 |
-
findings = results["findings"]
|
| 215 |
-
recommendations = results["followup_recommendations"]
|
| 216 |
-
```
|
| 217 |
-
|
| 218 |
-
### MultimodalFusion
|
| 219 |
-
|
| 220 |
-
```python
|
| 221 |
-
from mediSync.models import MultimodalFusion
|
| 222 |
-
|
| 223 |
-
# Initialize
|
| 224 |
-
fusion = MultimodalFusion()
|
| 225 |
-
|
| 226 |
-
# Multimodal analysis
|
| 227 |
-
results = fusion.analyze("path/to/image.jpg", "Medical report text...")
|
| 228 |
-
|
| 229 |
-
# Get explanation
|
| 230 |
-
explanation = fusion.get_explanation(results)
|
| 231 |
-
```
|
| 232 |
-
|
| 233 |
-
## Extending the System
|
| 234 |
-
|
| 235 |
-
### Adding New Models
|
| 236 |
-
|
| 237 |
-
To add a new image analysis model:
|
| 238 |
-
|
| 239 |
-
1. Create a new class that follows the same interface as `XRayImageAnalyzer`
|
| 240 |
-
2. Update the `MultimodalFusion` class to use your new model
|
| 241 |
-
|
| 242 |
-
```python
|
| 243 |
-
class NewXRayModel:
|
| 244 |
-
def __init__(self, model_name, device=None):
|
| 245 |
-
# Initialize your model
|
| 246 |
-
pass
|
| 247 |
-
|
| 248 |
-
def analyze(self, image_path):
|
| 249 |
-
# Implement analysis logic
|
| 250 |
-
return results
|
| 251 |
-
|
| 252 |
-
def get_explanation(self, results):
|
| 253 |
-
# Generate explanation
|
| 254 |
-
return explanation
|
| 255 |
-
```
|
| 256 |
-
|
| 257 |
-
### Custom Preprocessing
|
| 258 |
-
|
| 259 |
-
You can extend the preprocessing utilities in `utils/preprocessing.py` for custom data preparation:
|
| 260 |
-
|
| 261 |
-
```python
|
| 262 |
-
def my_custom_preprocessor(image_path, **kwargs):
|
| 263 |
-
# Implement custom preprocessing
|
| 264 |
-
return processed_image
|
| 265 |
-
```
|
| 266 |
-
|
| 267 |
-
### Visualization Extensions
|
| 268 |
-
|
| 269 |
-
To add new visualization options, extend the utilities in `utils/visualization.py`:
|
| 270 |
-
|
| 271 |
-
```python
|
| 272 |
-
def my_custom_visualization(results, **kwargs):
|
| 273 |
-
# Create custom visualization
|
| 274 |
-
return figure
|
| 275 |
-
```
|
| 276 |
-
|
| 277 |
-
## Troubleshooting
|
| 278 |
-
|
| 279 |
-
### Common Issues
|
| 280 |
-
|
| 281 |
-
1. **Model Loading Errors**
|
| 282 |
-
- Ensure you have a stable internet connection for downloading models
|
| 283 |
-
- Check that you have sufficient disk space
|
| 284 |
-
- Try specifying a different model checkpoint
|
| 285 |
-
|
| 286 |
-
2. **Image Processing Errors**
|
| 287 |
-
- Ensure images are in a supported format (JPEG, PNG)
|
| 288 |
-
- Check that the image is a valid X-ray image
|
| 289 |
-
- Try preprocessing the image manually using the utility functions
|
| 290 |
-
|
| 291 |
-
3. **Performance Issues**
|
| 292 |
-
- For faster inference, use a GPU if available
|
| 293 |
-
- Reduce image resolution if processing is too slow
|
| 294 |
-
- Use the text-only analysis for quicker results
|
| 295 |
-
|
| 296 |
-
### Logging
|
| 297 |
-
|
| 298 |
-
MediSync uses Python's logging module for debug information:
|
| 299 |
-
|
| 300 |
-
```python
|
| 301 |
-
import logging
|
| 302 |
-
logging.basicConfig(level=logging.DEBUG)
|
| 303 |
-
```
|
| 304 |
-
|
| 305 |
-
Log files are saved to `mediSync.log` in the application directory.
|
| 306 |
-
|
| 307 |
-
## References
|
| 308 |
-
|
| 309 |
-
### Datasets
|
| 310 |
-
|
| 311 |
-
- [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.0.0/): Large dataset of chest radiographs with reports
|
| 312 |
-
- [ChestX-ray14](https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community): NIH dataset of chest X-rays
|
| 313 |
-
|
| 314 |
-
### Papers
|
| 315 |
-
|
| 316 |
-
- He, K., et al. (2020). "Vision Transformers for Medical Image Analysis"
|
| 317 |
-
- Irvin, J., et al. (2019). "CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison"
|
| 318 |
-
- Johnson, A.E.W., et al. (2019). "MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs"
|
| 319 |
-
|
| 320 |
-
### Tools and Libraries
|
| 321 |
-
|
| 322 |
-
- [Hugging Face Transformers](https://huggingface.co/docs/transformers/index)
|
| 323 |
-
- [PyTorch](https://pytorch.org/)
|
| 324 |
-
- [Gradio](https://gradio.app/)
|
| 325 |
-
|
| 326 |
-
---
|
| 327 |
-
|
| 328 |
-
## License
|
| 329 |
-
|
| 330 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
| 331 |
-
|
| 332 |
-
## Acknowledgments
|
| 333 |
-
|
| 334 |
-
- The development of MediSync was inspired by recent advances in multi-modal learning in healthcare.
|
| 335 |
-
- Special thanks to the open-source community for providing pre-trained models and tools.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|