Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, Form, Request | |
from fastapi.responses import HTMLResponse | |
from fastapi.templating import Jinja2Templates | |
import joblib | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Load saved models | |
logistic_regression_model = joblib.load('logistic_regression_model.pkl') | |
svm_model = joblib.load('svm_model.pkl') | |
rfc_model = joblib.load('random_forest_model.pkl') | |
knn_model = joblib.load('knn_model.pkl') | |
neural_network_model = joblib.load('neural_network_model.pkl') | |
# Load scaler (assuming you saved it as scaler.pkl) | |
scaler = joblib.load('scaler.pkl') | |
# Jinja2 template renderer | |
templates = Jinja2Templates(directory="templates") | |
# Define function to make predictions | |
def make_prediction(model, data): | |
prediction = model.predict([data]) | |
return prediction[0] | |
# Home page route | |
async def home(request: Request): | |
return templates.TemplateResponse("index.html", {"request": request}) | |
# Prediction route | |
async def predict(request: Request, variance: float = Form(...), skewness: float = Form(...), | |
curtosis: float = Form(...), entropy: float = Form(...)): | |
# Prepare the feature vector | |
features = np.array([variance, skewness, curtosis, entropy]) | |
# Scale the input features | |
scaled_features = scaler.transform([features]) | |
# Make predictions using each model | |
logistic_regression_prediction = make_prediction(logistic_regression_model, scaled_features) | |
svm_prediction = make_prediction(svm_model, scaled_features) | |
rfc_prediction = make_prediction(rfc_model, scaled_features) | |
knn_prediction = make_prediction(knn_model, scaled_features) | |
nn_prediction = make_prediction(neural_network_model, scaled_features) | |
# Render the results page with predictions | |
return templates.TemplateResponse("result.html", { | |
"request": request, | |
"logistic_regression": logistic_regression_prediction, | |
"svm": svm_prediction, | |
"random_forest": rfc_prediction, | |
"knn": knn_prediction, | |
"neural_network": nn_prediction | |
}) |