Spaces:
Building
Building
import base64 | |
import logging | |
from typing import Optional, cast | |
import numpy as np | |
from sqlalchemy.exc import IntegrityError | |
from configs import dify_config | |
from core.entities.embedding_type import EmbeddingInputType | |
from core.model_manager import ModelInstance | |
from core.model_runtime.entities.model_entities import ModelPropertyKey | |
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel | |
from core.rag.embedding.embedding_base import Embeddings | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from libs import helper | |
from models.dataset import Embedding | |
logger = logging.getLogger(__name__) | |
class CacheEmbedding(Embeddings): | |
def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None: | |
self._model_instance = model_instance | |
self._user = user | |
def embed_documents(self, texts: list[str]) -> list[list[float]]: | |
"""Embed search docs in batches of 10.""" | |
# use doc embedding cache or store if not exists | |
text_embeddings = [None for _ in range(len(texts))] | |
embedding_queue_indices = [] | |
for i, text in enumerate(texts): | |
hash = helper.generate_text_hash(text) | |
embedding = ( | |
db.session.query(Embedding) | |
.filter_by( | |
model_name=self._model_instance.model, hash=hash, provider_name=self._model_instance.provider | |
) | |
.first() | |
) | |
if embedding: | |
text_embeddings[i] = embedding.get_embedding() | |
else: | |
embedding_queue_indices.append(i) | |
if embedding_queue_indices: | |
embedding_queue_texts = [texts[i] for i in embedding_queue_indices] | |
embedding_queue_embeddings = [] | |
try: | |
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance) | |
model_schema = model_type_instance.get_model_schema( | |
self._model_instance.model, self._model_instance.credentials | |
) | |
max_chunks = ( | |
model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] | |
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties | |
else 1 | |
) | |
for i in range(0, len(embedding_queue_texts), max_chunks): | |
batch_texts = embedding_queue_texts[i : i + max_chunks] | |
embedding_result = self._model_instance.invoke_text_embedding( | |
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT | |
) | |
for vector in embedding_result.embeddings: | |
try: | |
normalized_embedding = (vector / np.linalg.norm(vector)).tolist() | |
embedding_queue_embeddings.append(normalized_embedding) | |
except IntegrityError: | |
db.session.rollback() | |
except Exception as e: | |
logging.exception("Failed transform embedding: %s", e) | |
cache_embeddings = [] | |
try: | |
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings): | |
text_embeddings[i] = embedding | |
hash = helper.generate_text_hash(texts[i]) | |
if hash not in cache_embeddings: | |
embedding_cache = Embedding( | |
model_name=self._model_instance.model, | |
hash=hash, | |
provider_name=self._model_instance.provider, | |
) | |
embedding_cache.set_embedding(embedding) | |
db.session.add(embedding_cache) | |
cache_embeddings.append(hash) | |
db.session.commit() | |
except IntegrityError: | |
db.session.rollback() | |
except Exception as ex: | |
db.session.rollback() | |
logger.error("Failed to embed documents: %s", ex) | |
raise ex | |
return text_embeddings | |
def embed_query(self, text: str) -> list[float]: | |
"""Embed query text.""" | |
# use doc embedding cache or store if not exists | |
hash = helper.generate_text_hash(text) | |
embedding_cache_key = f"{self._model_instance.provider}_{self._model_instance.model}_{hash}" | |
embedding = redis_client.get(embedding_cache_key) | |
if embedding: | |
redis_client.expire(embedding_cache_key, 600) | |
return list(np.frombuffer(base64.b64decode(embedding), dtype="float")) | |
try: | |
embedding_result = self._model_instance.invoke_text_embedding( | |
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY | |
) | |
embedding_results = embedding_result.embeddings[0] | |
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() | |
except Exception as ex: | |
if dify_config.DEBUG: | |
logging.exception(f"Failed to embed query text: {ex}") | |
raise ex | |
try: | |
# encode embedding to base64 | |
embedding_vector = np.array(embedding_results) | |
vector_bytes = embedding_vector.tobytes() | |
# Transform to Base64 | |
encoded_vector = base64.b64encode(vector_bytes) | |
# Transform to string | |
encoded_str = encoded_vector.decode("utf-8") | |
redis_client.setex(embedding_cache_key, 600, encoded_str) | |
except Exception as ex: | |
if dify_config.DEBUG: | |
logging.exception("Failed to add embedding to redis %s", ex) | |
raise ex | |
return embedding_results | |