Spaces:
Paused
Paused
| import datetime | |
| import json | |
| import logging | |
| import random | |
| import time | |
| import uuid | |
| from typing import Any, Optional | |
| from flask_login import current_user | |
| from sqlalchemy import func | |
| from werkzeug.exceptions import NotFound | |
| from configs import dify_config | |
| from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError | |
| from core.model_manager import ModelManager | |
| from core.model_runtime.entities.model_entities import ModelType | |
| from core.rag.datasource.keyword.keyword_factory import Keyword | |
| from core.rag.models.document import Document as RAGDocument | |
| from core.rag.retrieval.retrieval_methods import RetrievalMethod | |
| from events.dataset_event import dataset_was_deleted | |
| from events.document_event import document_was_deleted | |
| from extensions.ext_database import db | |
| from extensions.ext_redis import redis_client | |
| from libs import helper | |
| from models.account import Account, TenantAccountRole | |
| from models.dataset import ( | |
| AppDatasetJoin, | |
| Dataset, | |
| DatasetCollectionBinding, | |
| DatasetPermission, | |
| DatasetPermissionEnum, | |
| DatasetProcessRule, | |
| DatasetQuery, | |
| Document, | |
| DocumentSegment, | |
| ExternalKnowledgeBindings, | |
| ) | |
| from models.model import UploadFile | |
| from models.source import DataSourceOauthBinding | |
| from services.errors.account import NoPermissionError | |
| from services.errors.dataset import DatasetNameDuplicateError | |
| from services.errors.document import DocumentIndexingError | |
| from services.errors.file import FileNotExistsError | |
| from services.external_knowledge_service import ExternalDatasetService | |
| from services.feature_service import FeatureModel, FeatureService | |
| from services.tag_service import TagService | |
| from services.vector_service import VectorService | |
| from tasks.clean_notion_document_task import clean_notion_document_task | |
| from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task | |
| from tasks.delete_segment_from_index_task import delete_segment_from_index_task | |
| from tasks.disable_segment_from_index_task import disable_segment_from_index_task | |
| from tasks.document_indexing_task import document_indexing_task | |
| from tasks.document_indexing_update_task import document_indexing_update_task | |
| from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task | |
| from tasks.recover_document_indexing_task import recover_document_indexing_task | |
| from tasks.retry_document_indexing_task import retry_document_indexing_task | |
| from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task | |
| class DatasetService: | |
| def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None): | |
| query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc()) | |
| if user: | |
| # get permitted dataset ids | |
| dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all() | |
| permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None | |
| if user.current_role == TenantAccountRole.DATASET_OPERATOR: | |
| # only show datasets that the user has permission to access | |
| if permitted_dataset_ids: | |
| query = query.filter(Dataset.id.in_(permitted_dataset_ids)) | |
| else: | |
| return [], 0 | |
| else: | |
| # show all datasets that the user has permission to access | |
| if permitted_dataset_ids: | |
| query = query.filter( | |
| db.or_( | |
| Dataset.permission == DatasetPermissionEnum.ALL_TEAM, | |
| db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id), | |
| db.and_( | |
| Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM, | |
| Dataset.id.in_(permitted_dataset_ids), | |
| ), | |
| ) | |
| ) | |
| else: | |
| query = query.filter( | |
| db.or_( | |
| Dataset.permission == DatasetPermissionEnum.ALL_TEAM, | |
| db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id), | |
| ) | |
| ) | |
| else: | |
| # if no user, only show datasets that are shared with all team members | |
| query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM) | |
| if search: | |
| query = query.filter(Dataset.name.ilike(f"%{search}%")) | |
| if tag_ids: | |
| target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids) | |
| if target_ids: | |
| query = query.filter(Dataset.id.in_(target_ids)) | |
| else: | |
| return [], 0 | |
| datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False) | |
| return datasets.items, datasets.total | |
| def get_process_rules(dataset_id): | |
| # get the latest process rule | |
| dataset_process_rule = ( | |
| db.session.query(DatasetProcessRule) | |
| .filter(DatasetProcessRule.dataset_id == dataset_id) | |
| .order_by(DatasetProcessRule.created_at.desc()) | |
| .limit(1) | |
| .one_or_none() | |
| ) | |
| if dataset_process_rule: | |
| mode = dataset_process_rule.mode | |
| rules = dataset_process_rule.rules_dict | |
| else: | |
| mode = DocumentService.DEFAULT_RULES["mode"] | |
| rules = DocumentService.DEFAULT_RULES["rules"] | |
| return {"mode": mode, "rules": rules} | |
| def get_datasets_by_ids(ids, tenant_id): | |
| datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate( | |
| page=1, per_page=len(ids), max_per_page=len(ids), error_out=False | |
| ) | |
| return datasets.items, datasets.total | |
| def create_empty_dataset( | |
| tenant_id: str, | |
| name: str, | |
| description: Optional[str], | |
| indexing_technique: Optional[str], | |
| account: Account, | |
| permission: Optional[str] = None, | |
| provider: str = "vendor", | |
| external_knowledge_api_id: Optional[str] = None, | |
| external_knowledge_id: Optional[str] = None, | |
| ): | |
| # check if dataset name already exists | |
| if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first(): | |
| raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.") | |
| embedding_model = None | |
| if indexing_technique == "high_quality": | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_default_model_instance( | |
| tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING | |
| ) | |
| dataset = Dataset(name=name, indexing_technique=indexing_technique) | |
| # dataset = Dataset(name=name, provider=provider, config=config) | |
| dataset.description = description | |
| dataset.created_by = account.id | |
| dataset.updated_by = account.id | |
| dataset.tenant_id = tenant_id | |
| dataset.embedding_model_provider = embedding_model.provider if embedding_model else None | |
| dataset.embedding_model = embedding_model.model if embedding_model else None | |
| dataset.permission = permission or DatasetPermissionEnum.ONLY_ME | |
| dataset.provider = provider | |
| db.session.add(dataset) | |
| db.session.flush() | |
| if provider == "external" and external_knowledge_api_id: | |
| external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id) | |
| if not external_knowledge_api: | |
| raise ValueError("External API template not found.") | |
| external_knowledge_binding = ExternalKnowledgeBindings( | |
| tenant_id=tenant_id, | |
| dataset_id=dataset.id, | |
| external_knowledge_api_id=external_knowledge_api_id, | |
| external_knowledge_id=external_knowledge_id, | |
| created_by=account.id, | |
| ) | |
| db.session.add(external_knowledge_binding) | |
| db.session.commit() | |
| return dataset | |
| def get_dataset(dataset_id) -> Dataset: | |
| return Dataset.query.filter_by(id=dataset_id).first() | |
| def check_dataset_model_setting(dataset): | |
| if dataset.indexing_technique == "high_quality": | |
| try: | |
| model_manager = ModelManager() | |
| model_manager.get_model_instance( | |
| tenant_id=dataset.tenant_id, | |
| provider=dataset.embedding_model_provider, | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=dataset.embedding_model, | |
| ) | |
| except LLMBadRequestError: | |
| raise ValueError( | |
| "No Embedding Model available. Please configure a valid provider " | |
| "in the Settings -> Model Provider." | |
| ) | |
| except ProviderTokenNotInitError as ex: | |
| raise ValueError(f"The dataset in unavailable, due to: {ex.description}") | |
| def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str): | |
| try: | |
| model_manager = ModelManager() | |
| model_manager.get_model_instance( | |
| tenant_id=tenant_id, | |
| provider=embedding_model_provider, | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=embedding_model, | |
| ) | |
| except LLMBadRequestError: | |
| raise ValueError( | |
| "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider." | |
| ) | |
| except ProviderTokenNotInitError as ex: | |
| raise ValueError(f"The dataset in unavailable, due to: {ex.description}") | |
| def update_dataset(dataset_id, data, user): | |
| dataset = DatasetService.get_dataset(dataset_id) | |
| DatasetService.check_dataset_permission(dataset, user) | |
| if dataset.provider == "external": | |
| dataset.retrieval_model = data.get("external_retrieval_model", None) | |
| dataset.name = data.get("name", dataset.name) | |
| dataset.description = data.get("description", "") | |
| external_knowledge_id = data.get("external_knowledge_id", None) | |
| dataset.permission = data.get("permission") | |
| db.session.add(dataset) | |
| if not external_knowledge_id: | |
| raise ValueError("External knowledge id is required.") | |
| external_knowledge_api_id = data.get("external_knowledge_api_id", None) | |
| if not external_knowledge_api_id: | |
| raise ValueError("External knowledge api id is required.") | |
| external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first() | |
| if ( | |
| external_knowledge_binding.external_knowledge_id != external_knowledge_id | |
| or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id | |
| ): | |
| external_knowledge_binding.external_knowledge_id = external_knowledge_id | |
| external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id | |
| db.session.add(external_knowledge_binding) | |
| db.session.commit() | |
| else: | |
| data.pop("partial_member_list", None) | |
| data.pop("external_knowledge_api_id", None) | |
| data.pop("external_knowledge_id", None) | |
| data.pop("external_retrieval_model", None) | |
| filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"} | |
| action = None | |
| if dataset.indexing_technique != data["indexing_technique"]: | |
| # if update indexing_technique | |
| if data["indexing_technique"] == "economy": | |
| action = "remove" | |
| filtered_data["embedding_model"] = None | |
| filtered_data["embedding_model_provider"] = None | |
| filtered_data["collection_binding_id"] = None | |
| elif data["indexing_technique"] == "high_quality": | |
| action = "add" | |
| # get embedding model setting | |
| try: | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_model_instance( | |
| tenant_id=current_user.current_tenant_id, | |
| provider=data["embedding_model_provider"], | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=data["embedding_model"], | |
| ) | |
| filtered_data["embedding_model"] = embedding_model.model | |
| filtered_data["embedding_model_provider"] = embedding_model.provider | |
| dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
| embedding_model.provider, embedding_model.model | |
| ) | |
| filtered_data["collection_binding_id"] = dataset_collection_binding.id | |
| except LLMBadRequestError: | |
| raise ValueError( | |
| "No Embedding Model available. Please configure a valid provider " | |
| "in the Settings -> Model Provider." | |
| ) | |
| except ProviderTokenNotInitError as ex: | |
| raise ValueError(ex.description) | |
| else: | |
| if ( | |
| data["embedding_model_provider"] != dataset.embedding_model_provider | |
| or data["embedding_model"] != dataset.embedding_model | |
| ): | |
| action = "update" | |
| try: | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_model_instance( | |
| tenant_id=current_user.current_tenant_id, | |
| provider=data["embedding_model_provider"], | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=data["embedding_model"], | |
| ) | |
| filtered_data["embedding_model"] = embedding_model.model | |
| filtered_data["embedding_model_provider"] = embedding_model.provider | |
| dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
| embedding_model.provider, embedding_model.model | |
| ) | |
| filtered_data["collection_binding_id"] = dataset_collection_binding.id | |
| except LLMBadRequestError: | |
| raise ValueError( | |
| "No Embedding Model available. Please configure a valid provider " | |
| "in the Settings -> Model Provider." | |
| ) | |
| except ProviderTokenNotInitError as ex: | |
| raise ValueError(ex.description) | |
| filtered_data["updated_by"] = user.id | |
| filtered_data["updated_at"] = datetime.datetime.now() | |
| # update Retrieval model | |
| filtered_data["retrieval_model"] = data["retrieval_model"] | |
| dataset.query.filter_by(id=dataset_id).update(filtered_data) | |
| db.session.commit() | |
| if action: | |
| deal_dataset_vector_index_task.delay(dataset_id, action) | |
| return dataset | |
| def delete_dataset(dataset_id, user): | |
| dataset = DatasetService.get_dataset(dataset_id) | |
| if dataset is None: | |
| return False | |
| DatasetService.check_dataset_permission(dataset, user) | |
| dataset_was_deleted.send(dataset) | |
| db.session.delete(dataset) | |
| db.session.commit() | |
| return True | |
| def dataset_use_check(dataset_id) -> bool: | |
| count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count() | |
| if count > 0: | |
| return True | |
| return False | |
| def check_dataset_permission(dataset, user): | |
| if dataset.tenant_id != user.current_tenant_id: | |
| logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") | |
| raise NoPermissionError("You do not have permission to access this dataset.") | |
| if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id: | |
| logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") | |
| raise NoPermissionError("You do not have permission to access this dataset.") | |
| if dataset.permission == "partial_members": | |
| user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first() | |
| if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id: | |
| logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}") | |
| raise NoPermissionError("You do not have permission to access this dataset.") | |
| def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None): | |
| if dataset.permission == DatasetPermissionEnum.ONLY_ME: | |
| if dataset.created_by != user.id: | |
| raise NoPermissionError("You do not have permission to access this dataset.") | |
| elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM: | |
| if not any( | |
| dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all() | |
| ): | |
| raise NoPermissionError("You do not have permission to access this dataset.") | |
| def get_dataset_queries(dataset_id: str, page: int, per_page: int): | |
| dataset_queries = ( | |
| DatasetQuery.query.filter_by(dataset_id=dataset_id) | |
| .order_by(db.desc(DatasetQuery.created_at)) | |
| .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False) | |
| ) | |
| return dataset_queries.items, dataset_queries.total | |
| def get_related_apps(dataset_id: str): | |
| return ( | |
| AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) | |
| .order_by(db.desc(AppDatasetJoin.created_at)) | |
| .all() | |
| ) | |
| class DocumentService: | |
| DEFAULT_RULES = { | |
| "mode": "custom", | |
| "rules": { | |
| "pre_processing_rules": [ | |
| {"id": "remove_extra_spaces", "enabled": True}, | |
| {"id": "remove_urls_emails", "enabled": False}, | |
| ], | |
| "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50}, | |
| }, | |
| } | |
| DOCUMENT_METADATA_SCHEMA = { | |
| "book": { | |
| "title": str, | |
| "language": str, | |
| "author": str, | |
| "publisher": str, | |
| "publication_date": str, | |
| "isbn": str, | |
| "category": str, | |
| }, | |
| "web_page": { | |
| "title": str, | |
| "url": str, | |
| "language": str, | |
| "publish_date": str, | |
| "author/publisher": str, | |
| "topic/keywords": str, | |
| "description": str, | |
| }, | |
| "paper": { | |
| "title": str, | |
| "language": str, | |
| "author": str, | |
| "publish_date": str, | |
| "journal/conference_name": str, | |
| "volume/issue/page_numbers": str, | |
| "doi": str, | |
| "topic/keywords": str, | |
| "abstract": str, | |
| }, | |
| "social_media_post": { | |
| "platform": str, | |
| "author/username": str, | |
| "publish_date": str, | |
| "post_url": str, | |
| "topic/tags": str, | |
| }, | |
| "wikipedia_entry": { | |
| "title": str, | |
| "language": str, | |
| "web_page_url": str, | |
| "last_edit_date": str, | |
| "editor/contributor": str, | |
| "summary/introduction": str, | |
| }, | |
| "personal_document": { | |
| "title": str, | |
| "author": str, | |
| "creation_date": str, | |
| "last_modified_date": str, | |
| "document_type": str, | |
| "tags/category": str, | |
| }, | |
| "business_document": { | |
| "title": str, | |
| "author": str, | |
| "creation_date": str, | |
| "last_modified_date": str, | |
| "document_type": str, | |
| "department/team": str, | |
| }, | |
| "im_chat_log": { | |
| "chat_platform": str, | |
| "chat_participants/group_name": str, | |
| "start_date": str, | |
| "end_date": str, | |
| "summary": str, | |
| }, | |
| "synced_from_notion": { | |
| "title": str, | |
| "language": str, | |
| "author/creator": str, | |
| "creation_date": str, | |
| "last_modified_date": str, | |
| "notion_page_link": str, | |
| "category/tags": str, | |
| "description": str, | |
| }, | |
| "synced_from_github": { | |
| "repository_name": str, | |
| "repository_description": str, | |
| "repository_owner/organization": str, | |
| "code_filename": str, | |
| "code_file_path": str, | |
| "programming_language": str, | |
| "github_link": str, | |
| "open_source_license": str, | |
| "commit_date": str, | |
| "commit_author": str, | |
| }, | |
| "others": dict, | |
| } | |
| def get_document(dataset_id: str, document_id: str) -> Optional[Document]: | |
| document = ( | |
| db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() | |
| ) | |
| return document | |
| def get_document_by_id(document_id: str) -> Optional[Document]: | |
| document = db.session.query(Document).filter(Document.id == document_id).first() | |
| return document | |
| def get_document_by_dataset_id(dataset_id: str) -> list[Document]: | |
| documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all() | |
| return documents | |
| def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]: | |
| documents = ( | |
| db.session.query(Document) | |
| .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"])) | |
| .all() | |
| ) | |
| return documents | |
| def get_batch_documents(dataset_id: str, batch: str) -> list[Document]: | |
| documents = ( | |
| db.session.query(Document) | |
| .filter( | |
| Document.batch == batch, | |
| Document.dataset_id == dataset_id, | |
| Document.tenant_id == current_user.current_tenant_id, | |
| ) | |
| .all() | |
| ) | |
| return documents | |
| def get_document_file_detail(file_id: str): | |
| file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none() | |
| return file_detail | |
| def check_archived(document): | |
| if document.archived: | |
| return True | |
| else: | |
| return False | |
| def delete_document(document): | |
| # trigger document_was_deleted signal | |
| file_id = None | |
| if document.data_source_type == "upload_file": | |
| if document.data_source_info: | |
| data_source_info = document.data_source_info_dict | |
| if data_source_info and "upload_file_id" in data_source_info: | |
| file_id = data_source_info["upload_file_id"] | |
| document_was_deleted.send( | |
| document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id | |
| ) | |
| db.session.delete(document) | |
| db.session.commit() | |
| def rename_document(dataset_id: str, document_id: str, name: str) -> Document: | |
| dataset = DatasetService.get_dataset(dataset_id) | |
| if not dataset: | |
| raise ValueError("Dataset not found.") | |
| document = DocumentService.get_document(dataset_id, document_id) | |
| if not document: | |
| raise ValueError("Document not found.") | |
| if document.tenant_id != current_user.current_tenant_id: | |
| raise ValueError("No permission.") | |
| document.name = name | |
| db.session.add(document) | |
| db.session.commit() | |
| return document | |
| def pause_document(document): | |
| if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}: | |
| raise DocumentIndexingError() | |
| # update document to be paused | |
| document.is_paused = True | |
| document.paused_by = current_user.id | |
| document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| db.session.add(document) | |
| db.session.commit() | |
| # set document paused flag | |
| indexing_cache_key = "document_{}_is_paused".format(document.id) | |
| redis_client.setnx(indexing_cache_key, "True") | |
| def recover_document(document): | |
| if not document.is_paused: | |
| raise DocumentIndexingError() | |
| # update document to be recover | |
| document.is_paused = False | |
| document.paused_by = None | |
| document.paused_at = None | |
| db.session.add(document) | |
| db.session.commit() | |
| # delete paused flag | |
| indexing_cache_key = "document_{}_is_paused".format(document.id) | |
| redis_client.delete(indexing_cache_key) | |
| # trigger async task | |
| recover_document_indexing_task.delay(document.dataset_id, document.id) | |
| def retry_document(dataset_id: str, documents: list[Document]): | |
| for document in documents: | |
| # add retry flag | |
| retry_indexing_cache_key = "document_{}_is_retried".format(document.id) | |
| cache_result = redis_client.get(retry_indexing_cache_key) | |
| if cache_result is not None: | |
| raise ValueError("Document is being retried, please try again later") | |
| # retry document indexing | |
| document.indexing_status = "waiting" | |
| db.session.add(document) | |
| db.session.commit() | |
| redis_client.setex(retry_indexing_cache_key, 600, 1) | |
| # trigger async task | |
| document_ids = [document.id for document in documents] | |
| retry_document_indexing_task.delay(dataset_id, document_ids) | |
| def sync_website_document(dataset_id: str, document: Document): | |
| # add sync flag | |
| sync_indexing_cache_key = "document_{}_is_sync".format(document.id) | |
| cache_result = redis_client.get(sync_indexing_cache_key) | |
| if cache_result is not None: | |
| raise ValueError("Document is being synced, please try again later") | |
| # sync document indexing | |
| document.indexing_status = "waiting" | |
| data_source_info = document.data_source_info_dict | |
| data_source_info["mode"] = "scrape" | |
| document.data_source_info = json.dumps(data_source_info, ensure_ascii=False) | |
| db.session.add(document) | |
| db.session.commit() | |
| redis_client.setex(sync_indexing_cache_key, 600, 1) | |
| sync_website_document_indexing_task.delay(dataset_id, document.id) | |
| def get_documents_position(dataset_id): | |
| document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first() | |
| if document: | |
| return document.position + 1 | |
| else: | |
| return 1 | |
| def save_document_with_dataset_id( | |
| dataset: Dataset, | |
| document_data: dict, | |
| account: Account | Any, | |
| dataset_process_rule: Optional[DatasetProcessRule] = None, | |
| created_from: str = "web", | |
| ): | |
| # check document limit | |
| features = FeatureService.get_features(current_user.current_tenant_id) | |
| if features.billing.enabled: | |
| if "original_document_id" not in document_data or not document_data["original_document_id"]: | |
| count = 0 | |
| if document_data["data_source"]["type"] == "upload_file": | |
| upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
| count = len(upload_file_list) | |
| elif document_data["data_source"]["type"] == "notion_import": | |
| notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
| for notion_info in notion_info_list: | |
| count = count + len(notion_info["pages"]) | |
| elif document_data["data_source"]["type"] == "website_crawl": | |
| website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
| count = len(website_info["urls"]) | |
| batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) | |
| if count > batch_upload_limit: | |
| raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
| DocumentService.check_documents_upload_quota(count, features) | |
| # if dataset is empty, update dataset data_source_type | |
| if not dataset.data_source_type: | |
| dataset.data_source_type = document_data["data_source"]["type"] | |
| if not dataset.indexing_technique: | |
| if ( | |
| "indexing_technique" not in document_data | |
| or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST | |
| ): | |
| raise ValueError("Indexing technique is required") | |
| dataset.indexing_technique = document_data["indexing_technique"] | |
| if document_data["indexing_technique"] == "high_quality": | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_default_model_instance( | |
| tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING | |
| ) | |
| dataset.embedding_model = embedding_model.model | |
| dataset.embedding_model_provider = embedding_model.provider | |
| dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
| embedding_model.provider, embedding_model.model | |
| ) | |
| dataset.collection_binding_id = dataset_collection_binding.id | |
| if not dataset.retrieval_model: | |
| default_retrieval_model = { | |
| "search_method": RetrievalMethod.SEMANTIC_SEARCH.value, | |
| "reranking_enable": False, | |
| "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""}, | |
| "top_k": 2, | |
| "score_threshold_enabled": False, | |
| } | |
| dataset.retrieval_model = document_data.get("retrieval_model") or default_retrieval_model | |
| documents = [] | |
| if document_data.get("original_document_id"): | |
| document = DocumentService.update_document_with_dataset_id(dataset, document_data, account) | |
| documents.append(document) | |
| batch = document.batch | |
| else: | |
| batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999)) | |
| # save process rule | |
| if not dataset_process_rule: | |
| process_rule = document_data["process_rule"] | |
| if process_rule["mode"] == "custom": | |
| dataset_process_rule = DatasetProcessRule( | |
| dataset_id=dataset.id, | |
| mode=process_rule["mode"], | |
| rules=json.dumps(process_rule["rules"]), | |
| created_by=account.id, | |
| ) | |
| elif process_rule["mode"] == "automatic": | |
| dataset_process_rule = DatasetProcessRule( | |
| dataset_id=dataset.id, | |
| mode=process_rule["mode"], | |
| rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), | |
| created_by=account.id, | |
| ) | |
| db.session.add(dataset_process_rule) | |
| db.session.commit() | |
| lock_name = "add_document_lock_dataset_id_{}".format(dataset.id) | |
| with redis_client.lock(lock_name, timeout=600): | |
| position = DocumentService.get_documents_position(dataset.id) | |
| document_ids = [] | |
| duplicate_document_ids = [] | |
| if document_data["data_source"]["type"] == "upload_file": | |
| upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
| for file_id in upload_file_list: | |
| file = ( | |
| db.session.query(UploadFile) | |
| .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id) | |
| .first() | |
| ) | |
| # raise error if file not found | |
| if not file: | |
| raise FileNotExistsError() | |
| file_name = file.name | |
| data_source_info = { | |
| "upload_file_id": file_id, | |
| } | |
| # check duplicate | |
| if document_data.get("duplicate", False): | |
| document = Document.query.filter_by( | |
| dataset_id=dataset.id, | |
| tenant_id=current_user.current_tenant_id, | |
| data_source_type="upload_file", | |
| enabled=True, | |
| name=file_name, | |
| ).first() | |
| if document: | |
| document.dataset_process_rule_id = dataset_process_rule.id | |
| document.updated_at = datetime.datetime.utcnow() | |
| document.created_from = created_from | |
| document.doc_form = document_data["doc_form"] | |
| document.doc_language = document_data["doc_language"] | |
| document.data_source_info = json.dumps(data_source_info) | |
| document.batch = batch | |
| document.indexing_status = "waiting" | |
| db.session.add(document) | |
| documents.append(document) | |
| duplicate_document_ids.append(document.id) | |
| continue | |
| document = DocumentService.build_document( | |
| dataset, | |
| dataset_process_rule.id, | |
| document_data["data_source"]["type"], | |
| document_data["doc_form"], | |
| document_data["doc_language"], | |
| data_source_info, | |
| created_from, | |
| position, | |
| account, | |
| file_name, | |
| batch, | |
| ) | |
| db.session.add(document) | |
| db.session.flush() | |
| document_ids.append(document.id) | |
| documents.append(document) | |
| position += 1 | |
| elif document_data["data_source"]["type"] == "notion_import": | |
| notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
| exist_page_ids = [] | |
| exist_document = {} | |
| documents = Document.query.filter_by( | |
| dataset_id=dataset.id, | |
| tenant_id=current_user.current_tenant_id, | |
| data_source_type="notion_import", | |
| enabled=True, | |
| ).all() | |
| if documents: | |
| for document in documents: | |
| data_source_info = json.loads(document.data_source_info) | |
| exist_page_ids.append(data_source_info["notion_page_id"]) | |
| exist_document[data_source_info["notion_page_id"]] = document.id | |
| for notion_info in notion_info_list: | |
| workspace_id = notion_info["workspace_id"] | |
| data_source_binding = DataSourceOauthBinding.query.filter( | |
| db.and_( | |
| DataSourceOauthBinding.tenant_id == current_user.current_tenant_id, | |
| DataSourceOauthBinding.provider == "notion", | |
| DataSourceOauthBinding.disabled == False, | |
| DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"', | |
| ) | |
| ).first() | |
| if not data_source_binding: | |
| raise ValueError("Data source binding not found.") | |
| for page in notion_info["pages"]: | |
| if page["page_id"] not in exist_page_ids: | |
| data_source_info = { | |
| "notion_workspace_id": workspace_id, | |
| "notion_page_id": page["page_id"], | |
| "notion_page_icon": page["page_icon"], | |
| "type": page["type"], | |
| } | |
| document = DocumentService.build_document( | |
| dataset, | |
| dataset_process_rule.id, | |
| document_data["data_source"]["type"], | |
| document_data["doc_form"], | |
| document_data["doc_language"], | |
| data_source_info, | |
| created_from, | |
| position, | |
| account, | |
| page["page_name"], | |
| batch, | |
| ) | |
| db.session.add(document) | |
| db.session.flush() | |
| document_ids.append(document.id) | |
| documents.append(document) | |
| position += 1 | |
| else: | |
| exist_document.pop(page["page_id"]) | |
| # delete not selected documents | |
| if len(exist_document) > 0: | |
| clean_notion_document_task.delay(list(exist_document.values()), dataset.id) | |
| elif document_data["data_source"]["type"] == "website_crawl": | |
| website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
| urls = website_info["urls"] | |
| for url in urls: | |
| data_source_info = { | |
| "url": url, | |
| "provider": website_info["provider"], | |
| "job_id": website_info["job_id"], | |
| "only_main_content": website_info.get("only_main_content", False), | |
| "mode": "crawl", | |
| } | |
| if len(url) > 255: | |
| document_name = url[:200] + "..." | |
| else: | |
| document_name = url | |
| document = DocumentService.build_document( | |
| dataset, | |
| dataset_process_rule.id, | |
| document_data["data_source"]["type"], | |
| document_data["doc_form"], | |
| document_data["doc_language"], | |
| data_source_info, | |
| created_from, | |
| position, | |
| account, | |
| document_name, | |
| batch, | |
| ) | |
| db.session.add(document) | |
| db.session.flush() | |
| document_ids.append(document.id) | |
| documents.append(document) | |
| position += 1 | |
| db.session.commit() | |
| # trigger async task | |
| if document_ids: | |
| document_indexing_task.delay(dataset.id, document_ids) | |
| if duplicate_document_ids: | |
| duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids) | |
| return documents, batch | |
| def check_documents_upload_quota(count: int, features: FeatureModel): | |
| can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size | |
| if count > can_upload_size: | |
| raise ValueError( | |
| f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded." | |
| ) | |
| def build_document( | |
| dataset: Dataset, | |
| process_rule_id: str, | |
| data_source_type: str, | |
| document_form: str, | |
| document_language: str, | |
| data_source_info: dict, | |
| created_from: str, | |
| position: int, | |
| account: Account, | |
| name: str, | |
| batch: str, | |
| ): | |
| document = Document( | |
| tenant_id=dataset.tenant_id, | |
| dataset_id=dataset.id, | |
| position=position, | |
| data_source_type=data_source_type, | |
| data_source_info=json.dumps(data_source_info), | |
| dataset_process_rule_id=process_rule_id, | |
| batch=batch, | |
| name=name, | |
| created_from=created_from, | |
| created_by=account.id, | |
| doc_form=document_form, | |
| doc_language=document_language, | |
| ) | |
| return document | |
| def get_tenant_documents_count(): | |
| documents_count = Document.query.filter( | |
| Document.completed_at.isnot(None), | |
| Document.enabled == True, | |
| Document.archived == False, | |
| Document.tenant_id == current_user.current_tenant_id, | |
| ).count() | |
| return documents_count | |
| def update_document_with_dataset_id( | |
| dataset: Dataset, | |
| document_data: dict, | |
| account: Account, | |
| dataset_process_rule: Optional[DatasetProcessRule] = None, | |
| created_from: str = "web", | |
| ): | |
| DatasetService.check_dataset_model_setting(dataset) | |
| document = DocumentService.get_document(dataset.id, document_data["original_document_id"]) | |
| if document is None: | |
| raise NotFound("Document not found") | |
| if document.display_status != "available": | |
| raise ValueError("Document is not available") | |
| # save process rule | |
| if document_data.get("process_rule"): | |
| process_rule = document_data["process_rule"] | |
| if process_rule["mode"] == "custom": | |
| dataset_process_rule = DatasetProcessRule( | |
| dataset_id=dataset.id, | |
| mode=process_rule["mode"], | |
| rules=json.dumps(process_rule["rules"]), | |
| created_by=account.id, | |
| ) | |
| elif process_rule["mode"] == "automatic": | |
| dataset_process_rule = DatasetProcessRule( | |
| dataset_id=dataset.id, | |
| mode=process_rule["mode"], | |
| rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES), | |
| created_by=account.id, | |
| ) | |
| db.session.add(dataset_process_rule) | |
| db.session.commit() | |
| document.dataset_process_rule_id = dataset_process_rule.id | |
| # update document data source | |
| if document_data.get("data_source"): | |
| file_name = "" | |
| data_source_info = {} | |
| if document_data["data_source"]["type"] == "upload_file": | |
| upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
| for file_id in upload_file_list: | |
| file = ( | |
| db.session.query(UploadFile) | |
| .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id) | |
| .first() | |
| ) | |
| # raise error if file not found | |
| if not file: | |
| raise FileNotExistsError() | |
| file_name = file.name | |
| data_source_info = { | |
| "upload_file_id": file_id, | |
| } | |
| elif document_data["data_source"]["type"] == "notion_import": | |
| notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
| for notion_info in notion_info_list: | |
| workspace_id = notion_info["workspace_id"] | |
| data_source_binding = DataSourceOauthBinding.query.filter( | |
| db.and_( | |
| DataSourceOauthBinding.tenant_id == current_user.current_tenant_id, | |
| DataSourceOauthBinding.provider == "notion", | |
| DataSourceOauthBinding.disabled == False, | |
| DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"', | |
| ) | |
| ).first() | |
| if not data_source_binding: | |
| raise ValueError("Data source binding not found.") | |
| for page in notion_info["pages"]: | |
| data_source_info = { | |
| "notion_workspace_id": workspace_id, | |
| "notion_page_id": page["page_id"], | |
| "notion_page_icon": page["page_icon"], | |
| "type": page["type"], | |
| } | |
| elif document_data["data_source"]["type"] == "website_crawl": | |
| website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
| urls = website_info["urls"] | |
| for url in urls: | |
| data_source_info = { | |
| "url": url, | |
| "provider": website_info["provider"], | |
| "job_id": website_info["job_id"], | |
| "only_main_content": website_info.get("only_main_content", False), | |
| "mode": "crawl", | |
| } | |
| document.data_source_type = document_data["data_source"]["type"] | |
| document.data_source_info = json.dumps(data_source_info) | |
| document.name = file_name | |
| # update document name | |
| if document_data.get("name"): | |
| document.name = document_data["name"] | |
| # update document to be waiting | |
| document.indexing_status = "waiting" | |
| document.completed_at = None | |
| document.processing_started_at = None | |
| document.parsing_completed_at = None | |
| document.cleaning_completed_at = None | |
| document.splitting_completed_at = None | |
| document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| document.created_from = created_from | |
| document.doc_form = document_data["doc_form"] | |
| db.session.add(document) | |
| db.session.commit() | |
| # update document segment | |
| update_params = {DocumentSegment.status: "re_segment"} | |
| DocumentSegment.query.filter_by(document_id=document.id).update(update_params) | |
| db.session.commit() | |
| # trigger async task | |
| document_indexing_update_task.delay(document.dataset_id, document.id) | |
| return document | |
| def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account): | |
| features = FeatureService.get_features(current_user.current_tenant_id) | |
| if features.billing.enabled: | |
| count = 0 | |
| if document_data["data_source"]["type"] == "upload_file": | |
| upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"] | |
| count = len(upload_file_list) | |
| elif document_data["data_source"]["type"] == "notion_import": | |
| notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"] | |
| for notion_info in notion_info_list: | |
| count = count + len(notion_info["pages"]) | |
| elif document_data["data_source"]["type"] == "website_crawl": | |
| website_info = document_data["data_source"]["info_list"]["website_info_list"] | |
| count = len(website_info["urls"]) | |
| batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT) | |
| if count > batch_upload_limit: | |
| raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
| DocumentService.check_documents_upload_quota(count, features) | |
| dataset_collection_binding_id = None | |
| retrieval_model = None | |
| if document_data["indexing_technique"] == "high_quality": | |
| dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding( | |
| document_data["embedding_model_provider"], document_data["embedding_model"] | |
| ) | |
| dataset_collection_binding_id = dataset_collection_binding.id | |
| if document_data.get("retrieval_model"): | |
| retrieval_model = document_data["retrieval_model"] | |
| else: | |
| default_retrieval_model = { | |
| "search_method": RetrievalMethod.SEMANTIC_SEARCH.value, | |
| "reranking_enable": False, | |
| "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""}, | |
| "top_k": 2, | |
| "score_threshold_enabled": False, | |
| } | |
| retrieval_model = default_retrieval_model | |
| # save dataset | |
| dataset = Dataset( | |
| tenant_id=tenant_id, | |
| name="", | |
| data_source_type=document_data["data_source"]["type"], | |
| indexing_technique=document_data.get("indexing_technique", "high_quality"), | |
| created_by=account.id, | |
| embedding_model=document_data.get("embedding_model"), | |
| embedding_model_provider=document_data.get("embedding_model_provider"), | |
| collection_binding_id=dataset_collection_binding_id, | |
| retrieval_model=retrieval_model, | |
| ) | |
| db.session.add(dataset) | |
| db.session.flush() | |
| documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account) | |
| cut_length = 18 | |
| cut_name = documents[0].name[:cut_length] | |
| dataset.name = cut_name + "..." | |
| dataset.description = "useful for when you want to answer queries about the " + documents[0].name | |
| db.session.commit() | |
| return dataset, documents, batch | |
| def document_create_args_validate(cls, args: dict): | |
| if "original_document_id" not in args or not args["original_document_id"]: | |
| DocumentService.data_source_args_validate(args) | |
| DocumentService.process_rule_args_validate(args) | |
| else: | |
| if ("data_source" not in args or not args["data_source"]) and ( | |
| "process_rule" not in args or not args["process_rule"] | |
| ): | |
| raise ValueError("Data source or Process rule is required") | |
| else: | |
| if args.get("data_source"): | |
| DocumentService.data_source_args_validate(args) | |
| if args.get("process_rule"): | |
| DocumentService.process_rule_args_validate(args) | |
| def data_source_args_validate(cls, args: dict): | |
| if "data_source" not in args or not args["data_source"]: | |
| raise ValueError("Data source is required") | |
| if not isinstance(args["data_source"], dict): | |
| raise ValueError("Data source is invalid") | |
| if "type" not in args["data_source"] or not args["data_source"]["type"]: | |
| raise ValueError("Data source type is required") | |
| if args["data_source"]["type"] not in Document.DATA_SOURCES: | |
| raise ValueError("Data source type is invalid") | |
| if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]: | |
| raise ValueError("Data source info is required") | |
| if args["data_source"]["type"] == "upload_file": | |
| if ( | |
| "file_info_list" not in args["data_source"]["info_list"] | |
| or not args["data_source"]["info_list"]["file_info_list"] | |
| ): | |
| raise ValueError("File source info is required") | |
| if args["data_source"]["type"] == "notion_import": | |
| if ( | |
| "notion_info_list" not in args["data_source"]["info_list"] | |
| or not args["data_source"]["info_list"]["notion_info_list"] | |
| ): | |
| raise ValueError("Notion source info is required") | |
| if args["data_source"]["type"] == "website_crawl": | |
| if ( | |
| "website_info_list" not in args["data_source"]["info_list"] | |
| or not args["data_source"]["info_list"]["website_info_list"] | |
| ): | |
| raise ValueError("Website source info is required") | |
| def process_rule_args_validate(cls, args: dict): | |
| if "process_rule" not in args or not args["process_rule"]: | |
| raise ValueError("Process rule is required") | |
| if not isinstance(args["process_rule"], dict): | |
| raise ValueError("Process rule is invalid") | |
| if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]: | |
| raise ValueError("Process rule mode is required") | |
| if args["process_rule"]["mode"] not in DatasetProcessRule.MODES: | |
| raise ValueError("Process rule mode is invalid") | |
| if args["process_rule"]["mode"] == "automatic": | |
| args["process_rule"]["rules"] = {} | |
| else: | |
| if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]: | |
| raise ValueError("Process rule rules is required") | |
| if not isinstance(args["process_rule"]["rules"], dict): | |
| raise ValueError("Process rule rules is invalid") | |
| if ( | |
| "pre_processing_rules" not in args["process_rule"]["rules"] | |
| or args["process_rule"]["rules"]["pre_processing_rules"] is None | |
| ): | |
| raise ValueError("Process rule pre_processing_rules is required") | |
| if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list): | |
| raise ValueError("Process rule pre_processing_rules is invalid") | |
| unique_pre_processing_rule_dicts = {} | |
| for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]: | |
| if "id" not in pre_processing_rule or not pre_processing_rule["id"]: | |
| raise ValueError("Process rule pre_processing_rules id is required") | |
| if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES: | |
| raise ValueError("Process rule pre_processing_rules id is invalid") | |
| if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None: | |
| raise ValueError("Process rule pre_processing_rules enabled is required") | |
| if not isinstance(pre_processing_rule["enabled"], bool): | |
| raise ValueError("Process rule pre_processing_rules enabled is invalid") | |
| unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule | |
| args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values()) | |
| if ( | |
| "segmentation" not in args["process_rule"]["rules"] | |
| or args["process_rule"]["rules"]["segmentation"] is None | |
| ): | |
| raise ValueError("Process rule segmentation is required") | |
| if not isinstance(args["process_rule"]["rules"]["segmentation"], dict): | |
| raise ValueError("Process rule segmentation is invalid") | |
| if ( | |
| "separator" not in args["process_rule"]["rules"]["segmentation"] | |
| or not args["process_rule"]["rules"]["segmentation"]["separator"] | |
| ): | |
| raise ValueError("Process rule segmentation separator is required") | |
| if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str): | |
| raise ValueError("Process rule segmentation separator is invalid") | |
| if ( | |
| "max_tokens" not in args["process_rule"]["rules"]["segmentation"] | |
| or not args["process_rule"]["rules"]["segmentation"]["max_tokens"] | |
| ): | |
| raise ValueError("Process rule segmentation max_tokens is required") | |
| if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int): | |
| raise ValueError("Process rule segmentation max_tokens is invalid") | |
| def estimate_args_validate(cls, args: dict): | |
| if "info_list" not in args or not args["info_list"]: | |
| raise ValueError("Data source info is required") | |
| if not isinstance(args["info_list"], dict): | |
| raise ValueError("Data info is invalid") | |
| if "process_rule" not in args or not args["process_rule"]: | |
| raise ValueError("Process rule is required") | |
| if not isinstance(args["process_rule"], dict): | |
| raise ValueError("Process rule is invalid") | |
| if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]: | |
| raise ValueError("Process rule mode is required") | |
| if args["process_rule"]["mode"] not in DatasetProcessRule.MODES: | |
| raise ValueError("Process rule mode is invalid") | |
| if args["process_rule"]["mode"] == "automatic": | |
| args["process_rule"]["rules"] = {} | |
| else: | |
| if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]: | |
| raise ValueError("Process rule rules is required") | |
| if not isinstance(args["process_rule"]["rules"], dict): | |
| raise ValueError("Process rule rules is invalid") | |
| if ( | |
| "pre_processing_rules" not in args["process_rule"]["rules"] | |
| or args["process_rule"]["rules"]["pre_processing_rules"] is None | |
| ): | |
| raise ValueError("Process rule pre_processing_rules is required") | |
| if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list): | |
| raise ValueError("Process rule pre_processing_rules is invalid") | |
| unique_pre_processing_rule_dicts = {} | |
| for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]: | |
| if "id" not in pre_processing_rule or not pre_processing_rule["id"]: | |
| raise ValueError("Process rule pre_processing_rules id is required") | |
| if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES: | |
| raise ValueError("Process rule pre_processing_rules id is invalid") | |
| if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None: | |
| raise ValueError("Process rule pre_processing_rules enabled is required") | |
| if not isinstance(pre_processing_rule["enabled"], bool): | |
| raise ValueError("Process rule pre_processing_rules enabled is invalid") | |
| unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule | |
| args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values()) | |
| if ( | |
| "segmentation" not in args["process_rule"]["rules"] | |
| or args["process_rule"]["rules"]["segmentation"] is None | |
| ): | |
| raise ValueError("Process rule segmentation is required") | |
| if not isinstance(args["process_rule"]["rules"]["segmentation"], dict): | |
| raise ValueError("Process rule segmentation is invalid") | |
| if ( | |
| "separator" not in args["process_rule"]["rules"]["segmentation"] | |
| or not args["process_rule"]["rules"]["segmentation"]["separator"] | |
| ): | |
| raise ValueError("Process rule segmentation separator is required") | |
| if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str): | |
| raise ValueError("Process rule segmentation separator is invalid") | |
| if ( | |
| "max_tokens" not in args["process_rule"]["rules"]["segmentation"] | |
| or not args["process_rule"]["rules"]["segmentation"]["max_tokens"] | |
| ): | |
| raise ValueError("Process rule segmentation max_tokens is required") | |
| if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int): | |
| raise ValueError("Process rule segmentation max_tokens is invalid") | |
| class SegmentService: | |
| def segment_create_args_validate(cls, args: dict, document: Document): | |
| if document.doc_form == "qa_model": | |
| if "answer" not in args or not args["answer"]: | |
| raise ValueError("Answer is required") | |
| if not args["answer"].strip(): | |
| raise ValueError("Answer is empty") | |
| if "content" not in args or not args["content"] or not args["content"].strip(): | |
| raise ValueError("Content is empty") | |
| def create_segment(cls, args: dict, document: Document, dataset: Dataset): | |
| content = args["content"] | |
| doc_id = str(uuid.uuid4()) | |
| segment_hash = helper.generate_text_hash(content) | |
| tokens = 0 | |
| if dataset.indexing_technique == "high_quality": | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_model_instance( | |
| tenant_id=current_user.current_tenant_id, | |
| provider=dataset.embedding_model_provider, | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=dataset.embedding_model, | |
| ) | |
| # calc embedding use tokens | |
| tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) | |
| lock_name = "add_segment_lock_document_id_{}".format(document.id) | |
| with redis_client.lock(lock_name, timeout=600): | |
| max_position = ( | |
| db.session.query(func.max(DocumentSegment.position)) | |
| .filter(DocumentSegment.document_id == document.id) | |
| .scalar() | |
| ) | |
| segment_document = DocumentSegment( | |
| tenant_id=current_user.current_tenant_id, | |
| dataset_id=document.dataset_id, | |
| document_id=document.id, | |
| index_node_id=doc_id, | |
| index_node_hash=segment_hash, | |
| position=max_position + 1 if max_position else 1, | |
| content=content, | |
| word_count=len(content), | |
| tokens=tokens, | |
| status="completed", | |
| indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
| completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
| created_by=current_user.id, | |
| ) | |
| if document.doc_form == "qa_model": | |
| segment_document.answer = args["answer"] | |
| db.session.add(segment_document) | |
| db.session.commit() | |
| # save vector index | |
| try: | |
| VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset) | |
| except Exception as e: | |
| logging.exception("create segment index failed") | |
| segment_document.enabled = False | |
| segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment_document.status = "error" | |
| segment_document.error = str(e) | |
| db.session.commit() | |
| segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first() | |
| return segment | |
| def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset): | |
| lock_name = "multi_add_segment_lock_document_id_{}".format(document.id) | |
| with redis_client.lock(lock_name, timeout=600): | |
| embedding_model = None | |
| if dataset.indexing_technique == "high_quality": | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_model_instance( | |
| tenant_id=current_user.current_tenant_id, | |
| provider=dataset.embedding_model_provider, | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=dataset.embedding_model, | |
| ) | |
| max_position = ( | |
| db.session.query(func.max(DocumentSegment.position)) | |
| .filter(DocumentSegment.document_id == document.id) | |
| .scalar() | |
| ) | |
| pre_segment_data_list = [] | |
| segment_data_list = [] | |
| keywords_list = [] | |
| for segment_item in segments: | |
| content = segment_item["content"] | |
| doc_id = str(uuid.uuid4()) | |
| segment_hash = helper.generate_text_hash(content) | |
| tokens = 0 | |
| if dataset.indexing_technique == "high_quality" and embedding_model: | |
| # calc embedding use tokens | |
| tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) | |
| segment_document = DocumentSegment( | |
| tenant_id=current_user.current_tenant_id, | |
| dataset_id=document.dataset_id, | |
| document_id=document.id, | |
| index_node_id=doc_id, | |
| index_node_hash=segment_hash, | |
| position=max_position + 1 if max_position else 1, | |
| content=content, | |
| word_count=len(content), | |
| tokens=tokens, | |
| status="completed", | |
| indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
| completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
| created_by=current_user.id, | |
| ) | |
| if document.doc_form == "qa_model": | |
| segment_document.answer = segment_item["answer"] | |
| db.session.add(segment_document) | |
| segment_data_list.append(segment_document) | |
| pre_segment_data_list.append(segment_document) | |
| if "keywords" in segment_item: | |
| keywords_list.append(segment_item["keywords"]) | |
| else: | |
| keywords_list.append(None) | |
| try: | |
| # save vector index | |
| VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset) | |
| except Exception as e: | |
| logging.exception("create segment index failed") | |
| for segment_document in segment_data_list: | |
| segment_document.enabled = False | |
| segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment_document.status = "error" | |
| segment_document.error = str(e) | |
| db.session.commit() | |
| return segment_data_list | |
| def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset): | |
| indexing_cache_key = "segment_{}_indexing".format(segment.id) | |
| cache_result = redis_client.get(indexing_cache_key) | |
| if cache_result is not None: | |
| raise ValueError("Segment is indexing, please try again later") | |
| if "enabled" in args and args["enabled"] is not None: | |
| action = args["enabled"] | |
| if segment.enabled != action: | |
| if not action: | |
| segment.enabled = action | |
| segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment.disabled_by = current_user.id | |
| db.session.add(segment) | |
| db.session.commit() | |
| # Set cache to prevent indexing the same segment multiple times | |
| redis_client.setex(indexing_cache_key, 600, 1) | |
| disable_segment_from_index_task.delay(segment.id) | |
| return segment | |
| if not segment.enabled: | |
| if "enabled" in args and args["enabled"] is not None: | |
| if not args["enabled"]: | |
| raise ValueError("Can't update disabled segment") | |
| else: | |
| raise ValueError("Can't update disabled segment") | |
| try: | |
| content = args["content"] | |
| if segment.content == content: | |
| if document.doc_form == "qa_model": | |
| segment.answer = args["answer"] | |
| if args.get("keywords"): | |
| segment.keywords = args["keywords"] | |
| segment.enabled = True | |
| segment.disabled_at = None | |
| segment.disabled_by = None | |
| db.session.add(segment) | |
| db.session.commit() | |
| # update segment index task | |
| if "keywords" in args: | |
| keyword = Keyword(dataset) | |
| keyword.delete_by_ids([segment.index_node_id]) | |
| document = RAGDocument( | |
| page_content=segment.content, | |
| metadata={ | |
| "doc_id": segment.index_node_id, | |
| "doc_hash": segment.index_node_hash, | |
| "document_id": segment.document_id, | |
| "dataset_id": segment.dataset_id, | |
| }, | |
| ) | |
| keyword.add_texts([document], keywords_list=[args["keywords"]]) | |
| else: | |
| segment_hash = helper.generate_text_hash(content) | |
| tokens = 0 | |
| if dataset.indexing_technique == "high_quality": | |
| model_manager = ModelManager() | |
| embedding_model = model_manager.get_model_instance( | |
| tenant_id=current_user.current_tenant_id, | |
| provider=dataset.embedding_model_provider, | |
| model_type=ModelType.TEXT_EMBEDDING, | |
| model=dataset.embedding_model, | |
| ) | |
| # calc embedding use tokens | |
| tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) | |
| segment.content = content | |
| segment.index_node_hash = segment_hash | |
| segment.word_count = len(content) | |
| segment.tokens = tokens | |
| segment.status = "completed" | |
| segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment.updated_by = current_user.id | |
| segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment.enabled = True | |
| segment.disabled_at = None | |
| segment.disabled_by = None | |
| if document.doc_form == "qa_model": | |
| segment.answer = args["answer"] | |
| db.session.add(segment) | |
| db.session.commit() | |
| # update segment vector index | |
| VectorService.update_segment_vector(args["keywords"], segment, dataset) | |
| except Exception as e: | |
| logging.exception("update segment index failed") | |
| segment.enabled = False | |
| segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
| segment.status = "error" | |
| segment.error = str(e) | |
| db.session.commit() | |
| segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first() | |
| return segment | |
| def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset): | |
| indexing_cache_key = "segment_{}_delete_indexing".format(segment.id) | |
| cache_result = redis_client.get(indexing_cache_key) | |
| if cache_result is not None: | |
| raise ValueError("Segment is deleting.") | |
| # enabled segment need to delete index | |
| if segment.enabled: | |
| # send delete segment index task | |
| redis_client.setex(indexing_cache_key, 600, 1) | |
| delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id) | |
| db.session.delete(segment) | |
| db.session.commit() | |
| class DatasetCollectionBindingService: | |
| def get_dataset_collection_binding( | |
| cls, provider_name: str, model_name: str, collection_type: str = "dataset" | |
| ) -> DatasetCollectionBinding: | |
| dataset_collection_binding = ( | |
| db.session.query(DatasetCollectionBinding) | |
| .filter( | |
| DatasetCollectionBinding.provider_name == provider_name, | |
| DatasetCollectionBinding.model_name == model_name, | |
| DatasetCollectionBinding.type == collection_type, | |
| ) | |
| .order_by(DatasetCollectionBinding.created_at) | |
| .first() | |
| ) | |
| if not dataset_collection_binding: | |
| dataset_collection_binding = DatasetCollectionBinding( | |
| provider_name=provider_name, | |
| model_name=model_name, | |
| collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())), | |
| type=collection_type, | |
| ) | |
| db.session.add(dataset_collection_binding) | |
| db.session.commit() | |
| return dataset_collection_binding | |
| def get_dataset_collection_binding_by_id_and_type( | |
| cls, collection_binding_id: str, collection_type: str = "dataset" | |
| ) -> DatasetCollectionBinding: | |
| dataset_collection_binding = ( | |
| db.session.query(DatasetCollectionBinding) | |
| .filter( | |
| DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type | |
| ) | |
| .order_by(DatasetCollectionBinding.created_at) | |
| .first() | |
| ) | |
| return dataset_collection_binding | |
| class DatasetPermissionService: | |
| def get_dataset_partial_member_list(cls, dataset_id): | |
| user_list_query = ( | |
| db.session.query( | |
| DatasetPermission.account_id, | |
| ) | |
| .filter(DatasetPermission.dataset_id == dataset_id) | |
| .all() | |
| ) | |
| user_list = [] | |
| for user in user_list_query: | |
| user_list.append(user.account_id) | |
| return user_list | |
| def update_partial_member_list(cls, tenant_id, dataset_id, user_list): | |
| try: | |
| db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete() | |
| permissions = [] | |
| for user in user_list: | |
| permission = DatasetPermission( | |
| tenant_id=tenant_id, | |
| dataset_id=dataset_id, | |
| account_id=user["user_id"], | |
| ) | |
| permissions.append(permission) | |
| db.session.add_all(permissions) | |
| db.session.commit() | |
| except Exception as e: | |
| db.session.rollback() | |
| raise e | |
| def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list): | |
| if not user.is_dataset_editor: | |
| raise NoPermissionError("User does not have permission to edit this dataset.") | |
| if user.is_dataset_operator and dataset.permission != requested_permission: | |
| raise NoPermissionError("Dataset operators cannot change the dataset permissions.") | |
| if user.is_dataset_operator and requested_permission == "partial_members": | |
| if not requested_partial_member_list: | |
| raise ValueError("Partial member list is required when setting to partial members.") | |
| local_member_list = cls.get_dataset_partial_member_list(dataset.id) | |
| request_member_list = [user["user_id"] for user in requested_partial_member_list] | |
| if set(local_member_list) != set(request_member_list): | |
| raise ValueError("Dataset operators cannot change the dataset permissions.") | |
| def clear_partial_member_list(cls, dataset_id): | |
| try: | |
| db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete() | |
| db.session.commit() | |
| except Exception as e: | |
| db.session.rollback() | |
| raise e | |