Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| from abc import ABC, abstractmethod | |
| from enum import Enum | |
| from typing import Optional | |
| from pydantic import BaseModel | |
| from core.extension.extensible import Extensible, ExtensionModule | |
| class ModerationAction(Enum): | |
| DIRECT_OUTPUT = "direct_output" | |
| OVERRIDDEN = "overridden" | |
| class ModerationInputsResult(BaseModel): | |
| flagged: bool = False | |
| action: ModerationAction | |
| preset_response: str = "" | |
| inputs: dict = {} | |
| query: str = "" | |
| class ModerationOutputsResult(BaseModel): | |
| flagged: bool = False | |
| action: ModerationAction | |
| preset_response: str = "" | |
| text: str = "" | |
| class Moderation(Extensible, ABC): | |
| """ | |
| The base class of moderation. | |
| """ | |
| module: ExtensionModule = ExtensionModule.MODERATION | |
| def __init__(self, app_id: str, tenant_id: str, config: Optional[dict] = None) -> None: | |
| super().__init__(tenant_id, config) | |
| self.app_id = app_id | |
| def validate_config(cls, tenant_id: str, config: dict) -> None: | |
| """ | |
| Validate the incoming form config data. | |
| :param tenant_id: the id of workspace | |
| :param config: the form config data | |
| :return: | |
| """ | |
| raise NotImplementedError | |
| def moderation_for_inputs(self, inputs: dict, query: str = "") -> ModerationInputsResult: | |
| """ | |
| Moderation for inputs. | |
| After the user inputs, this method will be called to perform sensitive content review | |
| on the user inputs and return the processed results. | |
| :param inputs: user inputs | |
| :param query: query string (required in chat app) | |
| :return: | |
| """ | |
| raise NotImplementedError | |
| def moderation_for_outputs(self, text: str) -> ModerationOutputsResult: | |
| """ | |
| Moderation for outputs. | |
| When LLM outputs content, the front end will pass the output content (may be segmented) | |
| to this method for sensitive content review, and the output content will be shielded if the review fails. | |
| :param text: LLM output content | |
| :return: | |
| """ | |
| raise NotImplementedError | |
| def _validate_inputs_and_outputs_config(cls, config: dict, is_preset_response_required: bool) -> None: | |
| # inputs_config | |
| inputs_config = config.get("inputs_config") | |
| if not isinstance(inputs_config, dict): | |
| raise ValueError("inputs_config must be a dict") | |
| # outputs_config | |
| outputs_config = config.get("outputs_config") | |
| if not isinstance(outputs_config, dict): | |
| raise ValueError("outputs_config must be a dict") | |
| inputs_config_enabled = inputs_config.get("enabled") | |
| outputs_config_enabled = outputs_config.get("enabled") | |
| if not inputs_config_enabled and not outputs_config_enabled: | |
| raise ValueError("At least one of inputs_config or outputs_config must be enabled") | |
| # preset_response | |
| if not is_preset_response_required: | |
| return | |
| if inputs_config_enabled: | |
| if not inputs_config.get("preset_response"): | |
| raise ValueError("inputs_config.preset_response is required") | |
| if len(inputs_config.get("preset_response")) > 100: | |
| raise ValueError("inputs_config.preset_response must be less than 100 characters") | |
| if outputs_config_enabled: | |
| if not outputs_config.get("preset_response"): | |
| raise ValueError("outputs_config.preset_response is required") | |
| if len(outputs_config.get("preset_response")) > 100: | |
| raise ValueError("outputs_config.preset_response must be less than 100 characters") | |
| class ModerationError(Exception): | |
| pass | |
