Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from diffusers import AutoPipelineForText2Image
|
| 5 |
+
from huggingface_hub import login
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Set page config
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="FLUX.1 Image Generator",
|
| 13 |
+
page_icon="🎨",
|
| 14 |
+
layout="wide"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Custom CSS to improve the app's appearance
|
| 18 |
+
st.markdown("""
|
| 19 |
+
<style>
|
| 20 |
+
.stProgress > div > div > div > div {
|
| 21 |
+
background-color: #1f77b4;
|
| 22 |
+
}
|
| 23 |
+
</style>
|
| 24 |
+
""", unsafe_allow_html=True)
|
| 25 |
+
|
| 26 |
+
class StreamlitProgressCallback:
|
| 27 |
+
def __init__(self, progress_bar):
|
| 28 |
+
self.progress_bar = progress_bar
|
| 29 |
+
self.current_step = 0
|
| 30 |
+
|
| 31 |
+
def __call__(self, step: int, timestep: int, latents: torch.FloatTensor):
|
| 32 |
+
self.current_step += 1
|
| 33 |
+
self.progress_bar.progress(self.current_step / step)
|
| 34 |
+
|
| 35 |
+
@st.cache_resource
|
| 36 |
+
def setup_flux(hf_token):
|
| 37 |
+
"""
|
| 38 |
+
Setup FLUX.1 with proper authentication and GPU optimization
|
| 39 |
+
"""
|
| 40 |
+
if not torch.cuda.is_available():
|
| 41 |
+
st.warning("⚠️ No GPU detected. Processing will be slow on CPU.")
|
| 42 |
+
return None
|
| 43 |
+
|
| 44 |
+
# Login to Hugging Face
|
| 45 |
+
login(token=hf_token)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
model_id = "black-forest-labs/FLUX.1-dev"
|
| 49 |
+
with st.spinner(f"Loading {model_id}..."):
|
| 50 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 51 |
+
model_id,
|
| 52 |
+
token=hf_token
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Move to GPU and optimize
|
| 56 |
+
pipe = pipe.to("cuda")
|
| 57 |
+
pipe.enable_attention_slicing()
|
| 58 |
+
pipe.enable_vae_slicing()
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 62 |
+
st.success("✅ Model loaded successfully with xformers optimization!")
|
| 63 |
+
except Exception:
|
| 64 |
+
st.info("ℹ️ xformers not available. Install with: pip install xformers")
|
| 65 |
+
|
| 66 |
+
return pipe
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
st.error(f"Error loading FLUX.1: {str(e)}")
|
| 70 |
+
return None
|
| 71 |
+
|
| 72 |
+
def process_image(image):
|
| 73 |
+
"""Process the generated image to ensure proper value ranges"""
|
| 74 |
+
img_array = np.array(image)
|
| 75 |
+
img_array = np.clip(img_array, 0, 1)
|
| 76 |
+
img_array = (img_array * 255).round().astype(np.uint8)
|
| 77 |
+
return Image.fromarray(img_array)
|
| 78 |
+
|
| 79 |
+
def generate_image(pipe, prompt, num_inference_steps=30):
|
| 80 |
+
"""Generate an image using the initialized pipeline"""
|
| 81 |
+
if pipe is None:
|
| 82 |
+
st.error("Error: Pipeline not properly initialized")
|
| 83 |
+
return None
|
| 84 |
+
|
| 85 |
+
# Clear CUDA cache before generation
|
| 86 |
+
if torch.cuda.is_available():
|
| 87 |
+
torch.cuda.empty_cache()
|
| 88 |
+
|
| 89 |
+
progress_bar = st.progress(0)
|
| 90 |
+
status_text = st.empty()
|
| 91 |
+
|
| 92 |
+
# Set up the progress callback
|
| 93 |
+
pipe.callback = StreamlitProgressCallback(progress_bar)
|
| 94 |
+
|
| 95 |
+
try:
|
| 96 |
+
with torch.autocast("cuda"):
|
| 97 |
+
status_text.text("🎨 Generating image...")
|
| 98 |
+
image = pipe(
|
| 99 |
+
prompt=prompt,
|
| 100 |
+
num_inference_steps=num_inference_steps,
|
| 101 |
+
guidance_scale=7.5,
|
| 102 |
+
).images[0]
|
| 103 |
+
|
| 104 |
+
# Process the image
|
| 105 |
+
image = process_image(image)
|
| 106 |
+
status_text.text("✨ Generation complete!")
|
| 107 |
+
progress_bar.progress(1.0)
|
| 108 |
+
return image
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
st.error(f"Error during image generation: {str(e)}")
|
| 112 |
+
return None
|
| 113 |
+
finally:
|
| 114 |
+
# Clean up GPU memory
|
| 115 |
+
if torch.cuda.is_available():
|
| 116 |
+
torch.cuda.empty_cache()
|
| 117 |
+
|
| 118 |
+
def main():
|
| 119 |
+
st.title("🎨 FLUX.1 Image Generator")
|
| 120 |
+
st.markdown("Generate amazing images using the FLUX.1 model from Black Forest Labs!")
|
| 121 |
+
|
| 122 |
+
# Sidebar for configuration
|
| 123 |
+
with st.sidebar:
|
| 124 |
+
st.header("Configuration")
|
| 125 |
+
hf_token = st.text_input("HuggingFace Token", type="password",
|
| 126 |
+
help="Enter your HuggingFace token to access the model")
|
| 127 |
+
|
| 128 |
+
num_steps = st.slider("Number of inference steps",
|
| 129 |
+
min_value=10, max_value=50, value=30,
|
| 130 |
+
help="More steps generally means better quality but slower generation")
|
| 131 |
+
|
| 132 |
+
st.markdown("---")
|
| 133 |
+
st.markdown("### Tips for better prompts:")
|
| 134 |
+
st.markdown("""
|
| 135 |
+
- Be specific and descriptive
|
| 136 |
+
- Include details about style, lighting, and mood
|
| 137 |
+
- Mention artistic mediums or techniques
|
| 138 |
+
""")
|
| 139 |
+
|
| 140 |
+
# Main content area
|
| 141 |
+
prompt = st.text_area("Enter your prompt",
|
| 142 |
+
"A serene landscape with mountains and a lake at sunset",
|
| 143 |
+
help="Describe the image you want to generate")
|
| 144 |
+
|
| 145 |
+
col1, col2 = st.columns([1, 4])
|
| 146 |
+
with col1:
|
| 147 |
+
generate_button = st.button("Generate Image", type="primary")
|
| 148 |
+
|
| 149 |
+
# Initialize session state for storing generated images
|
| 150 |
+
if 'generated_images' not in st.session_state:
|
| 151 |
+
st.session_state.generated_images = []
|
| 152 |
+
|
| 153 |
+
if generate_button and hf_token:
|
| 154 |
+
pipe = setup_flux(hf_token)
|
| 155 |
+
if pipe is not None:
|
| 156 |
+
image = generate_image(pipe, prompt, num_steps)
|
| 157 |
+
if image is not None:
|
| 158 |
+
# Save the image
|
| 159 |
+
st.session_state.generated_images.append({
|
| 160 |
+
'image': image,
|
| 161 |
+
'prompt': prompt
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
+
# Display generated images
|
| 165 |
+
if st.session_state.generated_images:
|
| 166 |
+
st.markdown("---")
|
| 167 |
+
st.header("Generated Images")
|
| 168 |
+
for idx, item in enumerate(reversed(st.session_state.generated_images)):
|
| 169 |
+
st.markdown(f"**Prompt:** {item['prompt']}")
|
| 170 |
+
st.image(item['image'], use_column_width=True)
|
| 171 |
+
st.markdown("---")
|
| 172 |
+
|
| 173 |
+
if __name__ == "__main__":
|
| 174 |
+
main()
|