Benaah's picture
Upload folder using huggingface_hub
2455231 verified
"""
AmaniQuery VibeVoice Service - FastAPI wrapper for TTS
Standalone HuggingFace Space for voice synthesis
"""
import os
import io
import wave
import logging
from typing import Optional
from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, Field
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# FastAPI app
app = FastAPI(
title="AmaniQuery VibeVoice",
description="Text-to-Speech service for AmaniQuery using Microsoft VibeVoice",
version="1.0.0",
)
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, restrict to specific origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global model instance (lazy loaded)
_tts_model = None
_processor = None
class SpeakRequest(BaseModel):
"""Request model for text-to-speech"""
text: str = Field(..., description="Text to convert to speech", max_length=5000)
voice: str = Field(default="Wayne", description="Voice preset to use")
cfg_scale: float = Field(default=1.5, ge=1.0, le=3.0, description="Classifier-free guidance scale")
class VoiceInfo(BaseModel):
"""Voice preset information"""
name: str
description: str
# Available voice presets
VOICE_PRESETS = [
VoiceInfo(name="Wayne", description="Male, American English, Calm"),
VoiceInfo(name="Angela", description="Female, American English, Professional"),
VoiceInfo(name="Aria", description="Female, American English, Warm"),
VoiceInfo(name="Davis", description="Male, American English, Confident"),
]
def get_tts_model():
"""Lazy load the TTS model"""
global _tts_model, _processor
if _tts_model is None:
logger.info("Loading VibeVoice model...")
try:
import torch
from vibevoice.modular import (
VibeVoiceStreamingForConditionalGenerationInference,
VibeVoiceStreamingConfig,
)
from vibevoice.processor import VibeVoiceStreamingProcessor
device = os.getenv("VIBEVOICE_DEVICE", "cpu")
if device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
config = VibeVoiceStreamingConfig(
model_path="microsoft/VibeVoice-Realtime-0.5B",
device=device,
)
_tts_model = VibeVoiceStreamingForConditionalGenerationInference(config)
_processor = VibeVoiceStreamingProcessor()
logger.info(f"VibeVoice model loaded on {device}")
except Exception as e:
logger.error(f"Failed to load VibeVoice model: {e}")
raise
return _tts_model, _processor
def validate_jwt(authorization: Optional[str] = None) -> bool:
"""Validate JWT token for cross-service auth (optional)"""
jwt_secret = os.getenv("JWT_SECRET")
if not jwt_secret:
# No JWT configured, allow all requests
return True
if not authorization or not authorization.startswith("Bearer "):
return False
try:
import jwt
token = authorization.replace("Bearer ", "")
jwt.decode(token, jwt_secret, algorithms=["HS256"])
return True
except Exception:
return False
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "service": "vibevoice"}
@app.get("/api/v1/voice/voices")
async def list_voices():
"""List available voice presets"""
return {"voices": [v.dict() for v in VOICE_PRESETS]}
@app.post("/api/v1/voice/speak")
async def speak(
request: SpeakRequest,
authorization: Optional[str] = Header(None),
):
"""Convert text to speech"""
# Optional JWT validation
if os.getenv("JWT_SECRET") and not validate_jwt(authorization):
raise HTTPException(status_code=401, detail="Invalid or missing authentication")
try:
model, processor = get_tts_model()
# Generate audio
logger.info(f"Generating speech for: {request.text[:50]}...")
# Process text and generate audio
audio_data = model.generate(
text=request.text,
voice=request.voice,
cfg_scale=request.cfg_scale,
)
# Convert to WAV format
audio_buffer = io.BytesIO()
with wave.open(audio_buffer, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(24000) # Sample rate
wav_file.writeframes(audio_data.tobytes())
audio_buffer.seek(0)
return StreamingResponse(
audio_buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=speech.wav"}
)
except Exception as e:
logger.error(f"TTS generation failed: {e}")
raise HTTPException(status_code=500, detail=f"Speech generation failed: {str(e)}")
@app.post("/api/v1/voice/chat")
async def voice_chat(
request: SpeakRequest,
authorization: Optional[str] = Header(None),
):
"""Generate conversational voice response (same as speak for now)"""
return await speak(request, authorization)
@app.get("/")
async def root():
"""Root endpoint with service info"""
return {
"service": "AmaniQuery VibeVoice",
"version": "1.0.0",
"endpoints": {
"health": "/health",
"speak": "/api/v1/voice/speak",
"voices": "/api/v1/voice/voices",
}
}
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)