Spaces:
Build error
Build error
import os | |
import json | |
import time | |
import logging | |
from pathlib import Path | |
from typing import List, Dict, Optional | |
from dataclasses import dataclass, asdict | |
from mineru import Mineru, Layout, Table | |
from sentence_transformers import SentenceTransformer | |
from llama_cpp import Llama | |
from fastapi.encoders import jsonable_encoder | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ProductSpec: | |
name: str | |
description: Optional[str] = None | |
price: Optional[float] = None | |
attributes: Dict[str, str] = None | |
tables: List[Dict] = None | |
def to_dict(self): | |
return jsonable_encoder(self) | |
class PDFProcessor: | |
def __init__(self): | |
self.mineru = Mineru() | |
self.emb_model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Initialize quantized LLM (using deepseek-1.3b) | |
self.llm = Llama( | |
model_path="models/deepseek-1.3b-q5_k_m.gguf", | |
n_ctx=2048, | |
n_threads=os.cpu_count() - 1, | |
n_gpu_layers=35 if os.getenv('USE_GPU') else 0 | |
) | |
def extract_layout(self, pdf_path: str) -> List[Layout]: | |
"""Extract structured layout using MinerU""" | |
return self.mineru.process_pdf(pdf_path) | |
def process_tables(self, tables: List[Table]) -> List[Dict]: | |
"""Convert MinerU tables to structured format""" | |
return [{ | |
"page": table.page_number, | |
"cells": table.cells, | |
"header": table.headers, | |
"content": table.content | |
} for table in tables] | |
def generate_query_prompt(self, text: str) -> str: | |
"""Create optimized extraction prompt""" | |
return f"""Extract product specifications from this text: | |
{text} | |
Return JSON format: | |
{{ | |
"name": "product name", | |
"description": "product description", | |
"price": numeric_price, | |
"attributes": {{ "key": "value" }} | |
}}""" | |
def parse_response(self, response: str) -> Optional[ProductSpec]: | |
"""Robust JSON parsing with fallbacks""" | |
try: | |
json_start = response.find('{') | |
json_end = response.rfind('}') + 1 | |
data = json.loads(response[json_start:json_end]) | |
return ProductSpec( | |
name=data.get('name', ''), | |
description=data.get('description'), | |
price=data.get('price'), | |
attributes=data.get('attributes', {}) | |
) | |
except (json.JSONDecodeError, KeyError) as e: | |
logger.warning(f"Parse error: {e}") | |
return None | |
def process_pdf(self, pdf_path: str) -> Dict: | |
"""Main processing pipeline""" | |
start_time = time.time() | |
# Extract structured content | |
layout = self.extract_layout(pdf_path) | |
tables = self.process_tables(layout.tables) | |
# Process text blocks | |
products = [] | |
for block in layout.text_blocks: | |
prompt = self.generate_query_prompt(block.text) | |
# Generate response with hardware optimization | |
response = self.llm.create_chat_completion( | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.1, | |
max_tokens=512 | |
) | |
if product := self.parse_response(response['choices'][0]['message']['content']): | |
product.tables = tables | |
products.append(product.to_dict()) | |
logger.info(f"Processed {len(products)} products in {time.time()-start_time:.2f}s") | |
return {"products": products, "tables": tables} | |
def process_pdf_catalog(pdf_path: str): | |
processor = PDFProcessor() | |
try: | |
result = processor.process_pdf(pdf_path) | |
return result, "Processing completed successfully!" | |
except Exception as e: | |
logger.error(f"Processing failed: {e}") | |
return {}, "Error processing PDF" |