|
import torch |
|
from audioldm.latent_diffusion.ema import * |
|
from audioldm.variational_autoencoder.modules import Encoder, Decoder |
|
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution |
|
|
|
from audioldm.hifigan.utilities import get_vocoder, vocoder_infer |
|
|
|
|
|
class AutoencoderKL(nn.Module): |
|
def __init__( |
|
self, |
|
ddconfig=None, |
|
lossconfig=None, |
|
image_key="fbank", |
|
embed_dim=None, |
|
time_shuffle=1, |
|
subband=1, |
|
ckpt_path=None, |
|
reload_from_ckpt=None, |
|
ignore_keys=[], |
|
colorize_nlabels=None, |
|
monitor=None, |
|
base_learning_rate=1e-5, |
|
scale_factor=1 |
|
): |
|
super().__init__() |
|
|
|
self.encoder = Encoder(**ddconfig) |
|
self.decoder = Decoder(**ddconfig) |
|
|
|
self.subband = int(subband) |
|
|
|
if self.subband > 1: |
|
print("Use subband decomposition %s" % self.subband) |
|
|
|
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
|
|
self.vocoder = get_vocoder(None, "cpu") |
|
self.embed_dim = embed_dim |
|
|
|
if monitor is not None: |
|
self.monitor = monitor |
|
|
|
self.time_shuffle = time_shuffle |
|
self.reload_from_ckpt = reload_from_ckpt |
|
self.reloaded = False |
|
self.mean, self.std = None, None |
|
|
|
self.scale_factor = scale_factor |
|
|
|
def encode(self, x): |
|
|
|
x = self.freq_split_subband(x) |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
return posterior |
|
|
|
def decode(self, z): |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
dec = self.freq_merge_subband(dec) |
|
return dec |
|
|
|
def decode_to_waveform(self, dec): |
|
dec = dec.squeeze(1).permute(0, 2, 1) |
|
wav_reconstruction = vocoder_infer(dec, self.vocoder) |
|
return wav_reconstruction |
|
|
|
def forward(self, input, sample_posterior=True): |
|
posterior = self.encode(input) |
|
if sample_posterior: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
|
|
if self.flag_first_run: |
|
print("Latent size: ", z.size()) |
|
self.flag_first_run = False |
|
|
|
dec = self.decode(z) |
|
|
|
return dec, posterior |
|
|
|
def freq_split_subband(self, fbank): |
|
if self.subband == 1 or self.image_key != "stft": |
|
return fbank |
|
|
|
bs, ch, tstep, fbins = fbank.size() |
|
|
|
assert fbank.size(-1) % self.subband == 0 |
|
assert ch == 1 |
|
|
|
return ( |
|
fbank.squeeze(1) |
|
.reshape(bs, tstep, self.subband, fbins // self.subband) |
|
.permute(0, 2, 1, 3) |
|
) |
|
|
|
def freq_merge_subband(self, subband_fbank): |
|
if self.subband == 1 or self.image_key != "stft": |
|
return subband_fbank |
|
assert subband_fbank.size(1) == self.subband |
|
bs, sub_ch, tstep, fbins = subband_fbank.size() |
|
return subband_fbank.permute(0, 2, 1, 3).reshape(bs, tstep, -1).unsqueeze(1) |
|
|
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
@torch.no_grad() |
|
def encode_first_stage(self, x): |
|
return self.encode(x) |
|
|
|
@torch.no_grad() |
|
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): |
|
if predict_cids: |
|
if z.dim() == 4: |
|
z = torch.argmax(z.exp(), dim=1).long() |
|
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) |
|
z = rearrange(z, "b h w c -> b c h w").contiguous() |
|
|
|
z = 1.0 / self.scale_factor * z |
|
return self.decode(z) |
|
|
|
def get_first_stage_encoding(self, encoder_posterior): |
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution): |
|
z = encoder_posterior.sample() |
|
elif isinstance(encoder_posterior, torch.Tensor): |
|
z = encoder_posterior |
|
else: |
|
raise NotImplementedError( |
|
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" |
|
) |
|
return self.scale_factor * z |