|
import torch |
|
import torch.nn as nn |
|
from audioldm.clap.open_clip import create_model |
|
from audioldm.clap.training.data import get_audio_features |
|
import torchaudio |
|
from transformers import RobertaTokenizer |
|
import torch.nn.functional as F |
|
|
|
|
|
class CLAPAudioEmbeddingClassifierFreev2(nn.Module): |
|
def __init__( |
|
self, |
|
pretrained_path="", |
|
key="class", |
|
sampling_rate=16000, |
|
embed_mode="audio", |
|
amodel = "HTSAT-tiny", |
|
unconditional_prob=0.1, |
|
random_mute=False, |
|
max_random_mute_portion=0.5, |
|
training_mode=True, |
|
): |
|
super().__init__() |
|
|
|
self.key = key |
|
self.device = "cpu" |
|
self.precision = "fp32" |
|
self.amodel = amodel |
|
self.tmodel = "roberta" |
|
self.enable_fusion = False |
|
self.fusion_type = "aff_2d" |
|
self.pretrained = pretrained_path |
|
self.embed_mode = embed_mode |
|
self.embed_mode_orig = embed_mode |
|
self.sampling_rate = sampling_rate |
|
self.unconditional_prob = unconditional_prob |
|
self.random_mute = random_mute |
|
self.tokenize = RobertaTokenizer.from_pretrained("roberta-base") |
|
self.max_random_mute_portion = max_random_mute_portion |
|
self.training_mode = training_mode |
|
self.model, self.model_cfg = create_model( |
|
self.amodel, |
|
self.tmodel, |
|
self.pretrained, |
|
precision=self.precision, |
|
device=self.device, |
|
enable_fusion=self.enable_fusion, |
|
fusion_type=self.fusion_type, |
|
) |
|
for p in self.model.parameters(): |
|
p.requires_grad = False |
|
|
|
self.model.eval() |
|
|
|
def get_unconditional_condition(self, batchsize): |
|
self.unconditional_token = self.model.get_text_embedding( |
|
self.tokenizer(["", ""]) |
|
)[0:1] |
|
return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0) |
|
|
|
def batch_to_list(self, batch): |
|
ret = [] |
|
for i in range(batch.size(0)): |
|
ret.append(batch[i]) |
|
return ret |
|
|
|
def make_decision(self, probability): |
|
if float(torch.rand(1)) < probability: |
|
return True |
|
else: |
|
return False |
|
|
|
def random_uniform(self, start, end): |
|
val = torch.rand(1).item() |
|
return start + (end - start) * val |
|
|
|
def _random_mute(self, waveform): |
|
|
|
t_steps = waveform.size(-1) |
|
for i in range(waveform.size(0)): |
|
mute_size = int( |
|
self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion)) |
|
) |
|
mute_start = int(self.random_uniform(0, t_steps - mute_size)) |
|
waveform[i, mute_start : mute_start + mute_size] = 0 |
|
return waveform |
|
|
|
def cos_similarity(self, waveform, text): |
|
|
|
with torch.no_grad(): |
|
self.embed_mode = "audio" |
|
audio_emb = self(waveform.cuda()) |
|
self.embed_mode = "text" |
|
text_emb = self(text) |
|
similarity = F.cosine_similarity(audio_emb, text_emb, dim=2), audio_emb, text_emb |
|
return similarity.squeeze() |
|
|
|
def forward(self, batch, key=None): |
|
|
|
|
|
if self.model.training == True and not self.training_mode: |
|
print( |
|
"The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters." |
|
) |
|
self.model, self.model_cfg = create_model( |
|
self.amodel, |
|
self.tmodel, |
|
self.pretrained, |
|
precision=self.precision, |
|
device="cuda", |
|
enable_fusion=self.enable_fusion, |
|
fusion_type=self.fusion_type, |
|
) |
|
for p in self.model.parameters(): |
|
p.requires_grad = False |
|
self.model.eval() |
|
|
|
|
|
if self.embed_mode == "audio": |
|
with torch.no_grad(): |
|
audio_dict_list = [] |
|
assert ( |
|
self.sampling_rate == 16000 |
|
), "We only support 16000 sampling rate" |
|
if self.random_mute: |
|
batch = self._random_mute(batch) |
|
|
|
batch = torchaudio.functional.resample( |
|
batch, orig_freq=self.sampling_rate, new_freq=48000 |
|
) |
|
for waveform in self.batch_to_list(batch): |
|
audio_dict = {} |
|
audio_dict = get_audio_features( |
|
audio_dict, |
|
waveform, |
|
480000, |
|
data_truncating="fusion", |
|
data_filling="repeatpad", |
|
audio_cfg=self.model_cfg["audio_cfg"], |
|
) |
|
audio_dict_list.append(audio_dict) |
|
|
|
embed = self.model.get_audio_embedding(audio_dict_list) |
|
elif self.embed_mode == "text": |
|
with torch.no_grad(): |
|
|
|
text_data = self.tokenizer(batch) |
|
embed = self.model.get_text_embedding(text_data) |
|
|
|
embed = embed.unsqueeze(1) |
|
self.unconditional_token = self.model.get_text_embedding( |
|
self.tokenizer(["", ""]) |
|
)[0:1] |
|
|
|
for i in range(embed.size(0)): |
|
if self.make_decision(self.unconditional_prob): |
|
embed[i] = self.unconditional_token |
|
|
|
|
|
return embed.detach() |
|
|
|
def tokenizer(self, text): |
|
result = self.tokenize( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=512, |
|
return_tensors="pt", |
|
) |
|
return {k: v.squeeze(0) for k, v in result.items()} |