|
import yaml |
|
import random |
|
import inspect |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from einops import repeat |
|
from tools.torch_tools import wav_to_fbank |
|
|
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder import AutoencoderKL |
|
from audioldm.utils import default_audioldm_config, get_metadata |
|
|
|
from transformers import CLIPTokenizer, AutoTokenizer, AutoProcessor |
|
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, ClapAudioModel, ClapTextModel |
|
|
|
import sys |
|
sys.path.insert(0, "diffusers/src") |
|
|
|
import diffusers |
|
from diffusers.utils import randn_tensor |
|
from diffusers import DDPMScheduler, UNet2DConditionModel, UNet2DConditionModelMusic |
|
from diffusers import AutoencoderKL as DiffuserAutoencoderKL |
|
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding |
|
|
|
def build_pretrained_models(name): |
|
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu") |
|
scale_factor = checkpoint["state_dict"]["scale_factor"].item() |
|
|
|
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k} |
|
|
|
config = default_audioldm_config(name) |
|
vae_config = config["model"]["params"]["first_stage_config"]["params"] |
|
vae_config["scale_factor"] = scale_factor |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(vae_state_dict) |
|
|
|
fn_STFT = TacotronSTFT( |
|
config["preprocessing"]["stft"]["filter_length"], |
|
config["preprocessing"]["stft"]["hop_length"], |
|
config["preprocessing"]["stft"]["win_length"], |
|
config["preprocessing"]["mel"]["n_mel_channels"], |
|
config["preprocessing"]["audio"]["sampling_rate"], |
|
config["preprocessing"]["mel"]["mel_fmin"], |
|
config["preprocessing"]["mel"]["mel_fmax"], |
|
) |
|
|
|
vae.eval() |
|
fn_STFT.eval() |
|
return vae, fn_STFT |
|
|
|
|
|
class AudioDiffusion(nn.Module): |
|
def __init__( |
|
self, |
|
text_encoder_name, |
|
scheduler_name, |
|
unet_model_name=None, |
|
unet_model_config_path=None, |
|
snr_gamma=None, |
|
freeze_text_encoder=True, |
|
uncondition=False, |
|
|
|
): |
|
super().__init__() |
|
|
|
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" |
|
|
|
self.text_encoder_name = text_encoder_name |
|
self.scheduler_name = scheduler_name |
|
self.unet_model_name = unet_model_name |
|
self.unet_model_config_path = unet_model_config_path |
|
self.snr_gamma = snr_gamma |
|
self.freeze_text_encoder = freeze_text_encoder |
|
self.uncondition = uncondition |
|
|
|
|
|
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") |
|
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") |
|
|
|
if unet_model_config_path: |
|
unet_config = UNet2DConditionModel.load_config(unet_model_config_path) |
|
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet") |
|
self.set_from = "random" |
|
print("UNet initialized randomly.") |
|
else: |
|
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet") |
|
self.set_from = "pre-trained" |
|
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4)) |
|
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8)) |
|
print("UNet initialized from stable diffusion checkpoint.") |
|
|
|
if "stable-diffusion" in self.text_encoder_name: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer") |
|
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder") |
|
elif "t5" in self.text_encoder_name: |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) |
|
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) |
|
else: |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) |
|
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name) |
|
|
|
def compute_snr(self, timesteps): |
|
""" |
|
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 |
|
""" |
|
alphas_cumprod = self.noise_scheduler.alphas_cumprod |
|
sqrt_alphas_cumprod = alphas_cumprod**0.5 |
|
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 |
|
|
|
|
|
|
|
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() |
|
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): |
|
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] |
|
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) |
|
|
|
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() |
|
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): |
|
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] |
|
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) |
|
|
|
|
|
snr = (alpha / sigma) ** 2 |
|
return snr |
|
|
|
def encode_text(self, prompt): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
if self.freeze_text_encoder: |
|
with torch.no_grad(): |
|
encoder_hidden_states = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
else: |
|
encoder_hidden_states = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
|
|
boolean_encoder_mask = (attention_mask == 1).to(device) |
|
return encoder_hidden_states, boolean_encoder_mask |
|
|
|
def forward(self, latents, prompt, validation_mode=False): |
|
device = self.text_encoder.device |
|
num_train_timesteps = self.noise_scheduler.num_train_timesteps |
|
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) |
|
|
|
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt) |
|
|
|
if self.uncondition: |
|
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1] |
|
if len(mask_indices) > 0: |
|
encoder_hidden_states[mask_indices] = 0 |
|
|
|
bsz = latents.shape[0] |
|
|
|
if validation_mode: |
|
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) |
|
else: |
|
|
|
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) |
|
|
|
timesteps = timesteps.long() |
|
|
|
noise = torch.randn_like(latents) |
|
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
if self.noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif self.noise_scheduler.config.prediction_type == "v_prediction": |
|
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") |
|
|
|
if self.set_from == "random": |
|
model_pred = self.unet( |
|
noisy_latents, timesteps, encoder_hidden_states, |
|
encoder_attention_mask=boolean_encoder_mask |
|
).sample |
|
|
|
elif self.set_from == "pre-trained": |
|
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() |
|
model_pred = self.unet( |
|
compressed_latents, timesteps, encoder_hidden_states, |
|
encoder_attention_mask=boolean_encoder_mask |
|
).sample |
|
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.snr_gamma is None: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
else: |
|
|
|
|
|
snr = self.compute_snr(timesteps) |
|
mse_loss_weights = ( |
|
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr |
|
) |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights |
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, |
|
disable_progress=True): |
|
device = self.text_encoder.device |
|
classifier_free_guidance = guidance_scale > 1.0 |
|
batch_size = len(prompt) * num_samples_per_prompt |
|
|
|
if classifier_free_guidance: |
|
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt) |
|
else: |
|
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt) |
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
inference_scheduler.set_timesteps(num_steps, device=device) |
|
timesteps = inference_scheduler.timesteps |
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) |
|
|
|
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order |
|
progress_bar = tqdm(range(num_steps), disable=disable_progress) |
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents |
|
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=boolean_prompt_mask |
|
).sample |
|
|
|
|
|
if classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): |
|
progress_bar.update(1) |
|
|
|
if self.set_from == "pre-trained": |
|
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() |
|
return latents |
|
|
|
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): |
|
shape = (batch_size, num_channels_latents, 256, 16) |
|
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) |
|
|
|
latents = latents * inference_scheduler.init_noise_sigma |
|
return latents |
|
|
|
def encode_text_classifier_free(self, prompt, num_samples_per_prompt): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
prompt_embeds = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
uncond_tokens = [""] * len(prompt) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_batch = self.tokenizer( |
|
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", |
|
) |
|
uncond_input_ids = uncond_batch.input_ids.to(device) |
|
uncond_attention_mask = uncond_batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
negative_prompt_embeds = self.text_encoder( |
|
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask |
|
)[0] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) |
|
boolean_prompt_mask = (prompt_mask == 1).to(device) |
|
|
|
return prompt_embeds, boolean_prompt_mask |
|
|
|
|
|
class MusicAudioDiffusion(nn.Module): |
|
def __init__( |
|
self, |
|
text_encoder_name, |
|
scheduler_name, |
|
unet_model_name=None, |
|
unet_model_config_path=None, |
|
snr_gamma=None, |
|
freeze_text_encoder=True, |
|
uncondition=False, |
|
|
|
d_fme = 1024, |
|
fme_type = "se", |
|
base = 1, |
|
if_trainable = True, |
|
translation_bias_type = "nd", |
|
emb_nn = True, |
|
d_pe = 1024, |
|
if_index = True, |
|
if_global_timing = True, |
|
if_modulo_timing = False, |
|
d_beat = 1024, |
|
d_oh_beat_type = 7, |
|
beat_len = 50, |
|
d_chord = 1024, |
|
d_oh_chord_type = 12, |
|
d_oh_inv_type = 4, |
|
chord_len = 20, |
|
|
|
): |
|
super().__init__() |
|
|
|
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required" |
|
|
|
self.text_encoder_name = text_encoder_name |
|
self.scheduler_name = scheduler_name |
|
self.unet_model_name = unet_model_name |
|
self.unet_model_config_path = unet_model_config_path |
|
self.snr_gamma = snr_gamma |
|
self.freeze_text_encoder = freeze_text_encoder |
|
self.uncondition = uncondition |
|
|
|
|
|
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") |
|
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler") |
|
|
|
if unet_model_config_path: |
|
unet_config = UNet2DConditionModelMusic.load_config(unet_model_config_path) |
|
self.unet = UNet2DConditionModelMusic.from_config(unet_config, subfolder="unet") |
|
self.set_from = "random" |
|
print("UNet initialized randomly.") |
|
else: |
|
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet") |
|
self.set_from = "pre-trained" |
|
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4)) |
|
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8)) |
|
print("UNet initialized from stable diffusion checkpoint.") |
|
|
|
if "stable-diffusion" in self.text_encoder_name: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer") |
|
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder") |
|
elif "t5" in self.text_encoder_name: |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) |
|
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) |
|
else: |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name) |
|
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name) |
|
|
|
self.device = self.text_encoder.device |
|
|
|
self.FME = Fundamental_Music_Embedding(d_model = d_fme, base= base, if_trainable = False, type = fme_type,emb_nn=emb_nn,translation_bias_type = translation_bias_type) |
|
self.PE = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device) |
|
|
|
self.beat_tokenizer = beat_tokenizer(seq_len_beat=beat_len, if_pad = True) |
|
self.beat_embedding_layer = Beat_Embedding(self.PE, d_model = d_beat, d_oh_beat_type = d_oh_beat_type) |
|
self.chord_embedding_layer = Chord_Embedding(self.FME, self.PE, d_model = d_chord, d_oh_type = d_oh_chord_type, d_oh_inv = d_oh_inv_type) |
|
self.chord_tokenizer = chord_tokenizer(seq_len_chord=chord_len, if_pad = True) |
|
|
|
|
|
def compute_snr(self, timesteps): |
|
""" |
|
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 |
|
""" |
|
alphas_cumprod = self.noise_scheduler.alphas_cumprod |
|
sqrt_alphas_cumprod = alphas_cumprod**0.5 |
|
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 |
|
|
|
|
|
|
|
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float() |
|
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape): |
|
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None] |
|
alpha = sqrt_alphas_cumprod.expand(timesteps.shape) |
|
|
|
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float() |
|
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape): |
|
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None] |
|
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape) |
|
|
|
|
|
snr = (alpha / sigma) ** 2 |
|
return snr |
|
|
|
def encode_text(self, prompt): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
if self.freeze_text_encoder: |
|
with torch.no_grad(): |
|
encoder_hidden_states = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
else: |
|
encoder_hidden_states = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
boolean_encoder_mask = (attention_mask == 1).to(device) |
|
return encoder_hidden_states, boolean_encoder_mask |
|
|
|
def encode_beats(self, beats): |
|
device = self.device |
|
out_beat = [] |
|
out_beat_timing = [] |
|
out_mask = [] |
|
for beat in beats: |
|
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat) |
|
out_beat.append(tokenized_beats) |
|
out_beat_timing.append(tokenized_beats_timing) |
|
out_mask.append(tokenized_beat_mask) |
|
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) |
|
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device) |
|
|
|
return embedded_beat, out_mask |
|
|
|
def encode_chords(self, chords,chords_time): |
|
device = self.device |
|
out_chord_root = [] |
|
out_chord_type = [] |
|
out_chord_inv = [] |
|
out_chord_timing = [] |
|
out_mask = [] |
|
for chord, chord_time in zip(chords,chords_time): |
|
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time) |
|
out_chord_root.append(tokenized_chord_root) |
|
out_chord_type.append(tokenized_chord_type) |
|
out_chord_inv.append(tokenized_chord_inv) |
|
out_chord_timing.append(tokenized_chord_time) |
|
out_mask.append(tokenized_chord_mask) |
|
|
|
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device) |
|
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device) |
|
return embedded_chord, out_mask |
|
|
|
|
|
|
|
def forward(self, latents, prompt, beats, chords,chords_time, validation_mode=False): |
|
device = self.text_encoder.device |
|
num_train_timesteps = self.noise_scheduler.num_train_timesteps |
|
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device) |
|
|
|
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt) |
|
|
|
|
|
encoded_beats, beat_mask = self.encode_beats(beats) |
|
encoded_chords, chord_mask = self.encode_chords(chords,chords_time) |
|
|
|
|
|
if self.uncondition: |
|
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1] |
|
if len(mask_indices) > 0: |
|
encoder_hidden_states[mask_indices] = 0 |
|
encoded_chords[mask_indices] = 0 |
|
encoded_beats[mask_indices] = 0 |
|
|
|
bsz = latents.shape[0] |
|
|
|
if validation_mode: |
|
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device) |
|
else: |
|
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device) |
|
|
|
|
|
timesteps = timesteps.long() |
|
|
|
noise = torch.randn_like(latents) |
|
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
if self.noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif self.noise_scheduler.config.prediction_type == "v_prediction": |
|
target = self.noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}") |
|
|
|
if self.set_from == "random": |
|
|
|
model_pred = self.unet( |
|
noisy_latents, timesteps, encoder_hidden_states, encoded_beats, encoded_chords, |
|
encoder_attention_mask=boolean_encoder_mask, beat_attention_mask = beat_mask, chord_attention_mask = chord_mask |
|
).sample |
|
|
|
elif self.set_from == "pre-trained": |
|
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() |
|
model_pred = self.unet( |
|
compressed_latents, timesteps, encoder_hidden_states, |
|
encoder_attention_mask=boolean_encoder_mask |
|
).sample |
|
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.snr_gamma is None: |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
else: |
|
|
|
|
|
snr = self.compute_snr(timesteps) |
|
mse_loss_weights = ( |
|
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr |
|
) |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") |
|
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights |
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
@torch.no_grad() |
|
def inference(self, prompt, beats, chords,chords_time, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, |
|
disable_progress=True): |
|
device = self.text_encoder.device |
|
classifier_free_guidance = guidance_scale > 1.0 |
|
batch_size = len(prompt) * num_samples_per_prompt |
|
|
|
if classifier_free_guidance: |
|
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt) |
|
encoded_beats, beat_mask = self.encode_beats_classifier_free(beats, num_samples_per_prompt) |
|
encoded_chords, chord_mask = self.encode_chords_classifier_free(chords, chords_time, num_samples_per_prompt) |
|
else: |
|
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt) |
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
encoded_beats, beat_mask = self.encode_beats(beats) |
|
encoded_beats = encoded_beats.repeat_interleave(num_samples_per_prompt, 0) |
|
beat_mask = beat_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
encoded_chords, chord_mask = self.encode_chords(chords,chords_time) |
|
encoded_chords = encoded_chords.repeat_interleave(num_samples_per_prompt, 0) |
|
chord_mask = chord_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
inference_scheduler.set_timesteps(num_steps, device=device) |
|
timesteps = inference_scheduler.timesteps |
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) |
|
|
|
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order |
|
progress_bar = tqdm(range(num_steps), disable=disable_progress) |
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents |
|
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, t, encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=boolean_prompt_mask, |
|
beat_features = encoded_beats, beat_attention_mask = beat_mask, chord_features = encoded_chords,chord_attention_mask = chord_mask |
|
).sample |
|
|
|
|
|
if classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): |
|
progress_bar.update(1) |
|
|
|
if self.set_from == "pre-trained": |
|
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous() |
|
return latents |
|
|
|
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): |
|
shape = (batch_size, num_channels_latents, 256, 16) |
|
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) |
|
|
|
latents = latents * inference_scheduler.init_noise_sigma |
|
return latents |
|
|
|
def encode_text_classifier_free(self, prompt, num_samples_per_prompt): |
|
device = self.text_encoder.device |
|
batch = self.tokenizer( |
|
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
prompt_embeds = self.text_encoder( |
|
input_ids=input_ids, attention_mask=attention_mask |
|
)[0] |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
|
|
uncond_tokens = [""] * len(prompt) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_batch = self.tokenizer( |
|
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", |
|
) |
|
uncond_input_ids = uncond_batch.input_ids.to(device) |
|
uncond_attention_mask = uncond_batch.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
negative_prompt_embeds = self.text_encoder( |
|
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask |
|
)[0] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) |
|
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) |
|
boolean_prompt_mask = (prompt_mask == 1).to(device) |
|
|
|
return prompt_embeds, boolean_prompt_mask |
|
|
|
|
|
def encode_beats_classifier_free(self, beats, num_samples_per_prompt): |
|
device = self.device |
|
with torch.no_grad(): |
|
out_beat = [] |
|
out_beat_timing = [] |
|
out_mask = [] |
|
for beat in beats: |
|
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat) |
|
out_beat.append(tokenized_beats) |
|
out_beat_timing.append(tokenized_beats_timing) |
|
out_mask.append(tokenized_beat_mask) |
|
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) |
|
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device) |
|
|
|
embedded_beat = embedded_beat.repeat_interleave(num_samples_per_prompt, 0) |
|
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
uncond_beats = [[[],[]]] * len(beats) |
|
|
|
max_length = embedded_beat.shape[1] |
|
with torch.no_grad(): |
|
out_beat_unc = [] |
|
out_beat_timing_unc = [] |
|
out_mask_unc = [] |
|
for beat in uncond_beats: |
|
tokenized_beats, tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat) |
|
out_beat_unc.append(tokenized_beats) |
|
out_beat_timing_unc.append(tokenized_beats_timing) |
|
out_mask_unc.append(tokenized_beat_mask) |
|
out_beat_unc, out_beat_timing_unc, out_mask_unc = torch.tensor(out_beat_unc).to(device), torch.tensor(out_beat_timing_unc).to(device), torch.tensor(out_mask_unc).to(device) |
|
embedded_beat_unc = self.beat_embedding_layer(out_beat_unc, out_beat_timing_unc, device) |
|
|
|
embedded_beat_unc = embedded_beat_unc.repeat_interleave(num_samples_per_prompt, 0) |
|
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
embedded_beat = torch.cat([embedded_beat_unc, embedded_beat]) |
|
out_mask = torch.cat([out_mask_unc, out_mask]) |
|
|
|
return embedded_beat, out_mask |
|
|
|
|
|
def encode_chords_classifier_free(self, chords, chords_time, num_samples_per_prompt): |
|
device = self.device |
|
with torch.no_grad(): |
|
out_chord_root = [] |
|
out_chord_type = [] |
|
out_chord_inv = [] |
|
out_chord_timing = [] |
|
out_mask = [] |
|
for chord, chord_time in zip(chords,chords_time): |
|
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time) |
|
out_chord_root.append(tokenized_chord_root) |
|
out_chord_type.append(tokenized_chord_type) |
|
out_chord_inv.append(tokenized_chord_inv) |
|
out_chord_timing.append(tokenized_chord_time) |
|
out_mask.append(tokenized_chord_mask) |
|
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device) |
|
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device) |
|
|
|
embedded_chord = embedded_chord.repeat_interleave(num_samples_per_prompt, 0) |
|
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
chords_unc=[[]] * len(chords) |
|
chords_time_unc=[[]] * len(chords_time) |
|
|
|
max_length = embedded_chord.shape[1] |
|
|
|
with torch.no_grad(): |
|
out_chord_root_unc = [] |
|
out_chord_type_unc = [] |
|
out_chord_inv_unc = [] |
|
out_chord_timing_unc = [] |
|
out_mask_unc = [] |
|
for chord, chord_time in zip(chords_unc,chords_time_unc): |
|
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time) |
|
out_chord_root_unc.append(tokenized_chord_root) |
|
out_chord_type_unc.append(tokenized_chord_type) |
|
out_chord_inv_unc.append(tokenized_chord_inv) |
|
out_chord_timing_unc.append(tokenized_chord_time) |
|
out_mask_unc.append(tokenized_chord_mask) |
|
out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, out_mask_unc = torch.tensor(out_chord_root_unc).to(device), torch.tensor(out_chord_type_unc).to(device), torch.tensor(out_chord_inv_unc).to(device), torch.tensor(out_chord_timing_unc).to(device), torch.tensor(out_mask_unc).to(device) |
|
embedded_chord_unc = self.chord_embedding_layer(out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, device) |
|
|
|
|
|
embedded_chord_unc = embedded_chord_unc.repeat_interleave(num_samples_per_prompt, 0) |
|
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0) |
|
|
|
embedded_chord = torch.cat([embedded_chord_unc, embedded_chord]) |
|
out_mask = torch.cat([out_mask_unc, out_mask]) |
|
|
|
return embedded_chord, out_mask |
|
|