Chetak / models.py
deepanway's picture
update files for device agnostic inference
9e0eee2
raw
history blame
37.6 kB
import yaml
import random
import inspect
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from tools.torch_tools import wav_to_fbank
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata
from transformers import CLIPTokenizer, AutoTokenizer, AutoProcessor
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, ClapAudioModel, ClapTextModel
import sys
sys.path.insert(0, "diffusers/src")
import diffusers
from diffusers.utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel, UNet2DConditionModelMusic
from diffusers import AutoencoderKL as DiffuserAutoencoderKL
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding
def build_pretrained_models(name):
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
config = default_audioldm_config(name)
vae_config = config["model"]["params"]["first_stage_config"]["params"]
vae_config["scale_factor"] = scale_factor
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(vae_state_dict)
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
vae.eval()
fn_STFT.eval()
return vae, fn_STFT
class AudioDiffusion(nn.Module):
def __init__(
self,
text_encoder_name,
scheduler_name,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
freeze_text_encoder=True,
uncondition=False,
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.text_encoder_name = text_encoder_name
self.scheduler_name = scheduler_name
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.freeze_text_encoder = freeze_text_encoder
self.uncondition = uncondition
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
if unet_model_config_path:
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
self.set_from = "random"
print("UNet initialized randomly.")
else:
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
self.set_from = "pre-trained"
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
print("UNet initialized from stable diffusion checkpoint.")
if "stable-diffusion" in self.text_encoder_name:
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
elif "t5" in self.text_encoder_name:
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
else:
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def forward(self, latents, prompt, validation_mode=False):
device = self.text_encoder.device
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
if self.uncondition:
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
bsz = latents.shape[0]
if validation_mode:
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
else:
# Sample a random timestep for each instance
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
# print('in if ', timesteps)
timesteps = timesteps.long()
# print('outside if ' , timesteps)
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
if self.set_from == "random":
model_pred = self.unet(
noisy_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
elif self.set_from == "pre-trained":
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
model_pred = self.unet(
compressed_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
@torch.no_grad()
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True):
device = self.text_encoder.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
if self.set_from == "pre-trained":
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
return latents
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
class MusicAudioDiffusion(nn.Module):
def __init__(
self,
text_encoder_name,
scheduler_name,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
freeze_text_encoder=True,
uncondition=False,
d_fme = 1024, #FME
fme_type = "se",
base = 1,
if_trainable = True,
translation_bias_type = "nd",
emb_nn = True,
d_pe = 1024, #PE
if_index = True,
if_global_timing = True,
if_modulo_timing = False,
d_beat = 1024, #Beat
d_oh_beat_type = 7,
beat_len = 50,
d_chord = 1024, #Chord
d_oh_chord_type = 12,
d_oh_inv_type = 4,
chord_len = 20,
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.text_encoder_name = text_encoder_name
self.scheduler_name = scheduler_name
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.freeze_text_encoder = freeze_text_encoder
self.uncondition = uncondition
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
if unet_model_config_path:
unet_config = UNet2DConditionModelMusic.load_config(unet_model_config_path)
self.unet = UNet2DConditionModelMusic.from_config(unet_config, subfolder="unet")
self.set_from = "random"
print("UNet initialized randomly.")
else:
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
self.set_from = "pre-trained"
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
print("UNet initialized from stable diffusion checkpoint.")
if "stable-diffusion" in self.text_encoder_name:
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
elif "t5" in self.text_encoder_name:
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
self.device = self.text_encoder.device
#Music Feature Encoder
self.FME = Fundamental_Music_Embedding(d_model = d_fme, base= base, if_trainable = False, type = fme_type,emb_nn=emb_nn,translation_bias_type = translation_bias_type)
self.PE = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
# self.PE2 = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
self.beat_tokenizer = beat_tokenizer(seq_len_beat=beat_len, if_pad = True)
self.beat_embedding_layer = Beat_Embedding(self.PE, d_model = d_beat, d_oh_beat_type = d_oh_beat_type)
self.chord_embedding_layer = Chord_Embedding(self.FME, self.PE, d_model = d_chord, d_oh_type = d_oh_chord_type, d_oh_inv = d_oh_inv_type)
self.chord_tokenizer = chord_tokenizer(seq_len_chord=chord_len, if_pad = True)
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) #cuda
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0] #batch, len_text, dim
else:
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device) ##batch, len_text
return encoder_hidden_states, boolean_encoder_mask
def encode_beats(self, beats):
device = self.device
out_beat = []
out_beat_timing = []
out_mask = []
for beat in beats:
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
out_beat.append(tokenized_beats)
out_beat_timing.append(tokenized_beats_timing)
out_mask.append(tokenized_beat_mask)
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) #batch, len_beat
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device)
return embedded_beat, out_mask
def encode_chords(self, chords,chords_time):
device = self.device
out_chord_root = []
out_chord_type = []
out_chord_inv = []
out_chord_timing = []
out_mask = []
for chord, chord_time in zip(chords,chords_time): #batch loop
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
out_chord_root.append(tokenized_chord_root)
out_chord_type.append(tokenized_chord_type)
out_chord_inv.append(tokenized_chord_inv)
out_chord_timing.append(tokenized_chord_time)
out_mask.append(tokenized_chord_mask)
#chords: (B, LEN, 4)
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device)
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device)
return embedded_chord, out_mask
# return out_chord_root, out_mask
def forward(self, latents, prompt, beats, chords,chords_time, validation_mode=False):
device = self.text_encoder.device
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
# with torch.no_grad():
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
if self.uncondition:
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
encoded_chords[mask_indices] = 0
encoded_beats[mask_indices] = 0
bsz = latents.shape[0]
if validation_mode:
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
else:
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
timesteps = timesteps.long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
if self.set_from == "random":
# model_pred = torch.zeros((bsz,8,256,16)).to(device)
model_pred = self.unet(
noisy_latents, timesteps, encoder_hidden_states, encoded_beats, encoded_chords,
encoder_attention_mask=boolean_encoder_mask, beat_attention_mask = beat_mask, chord_attention_mask = chord_mask
).sample
elif self.set_from == "pre-trained":
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
model_pred = self.unet(
compressed_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
@torch.no_grad()
def inference(self, prompt, beats, chords,chords_time, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True):
device = self.text_encoder.device
classifier_free_guidance = guidance_scale > 1.0
batch_size = len(prompt) * num_samples_per_prompt
if classifier_free_guidance:
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
encoded_beats, beat_mask = self.encode_beats_classifier_free(beats, num_samples_per_prompt) #batch, len_beats, dim; batch, len_beats
encoded_chords, chord_mask = self.encode_chords_classifier_free(chords, chords_time, num_samples_per_prompt)
else:
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
encoded_beats = encoded_beats.repeat_interleave(num_samples_per_prompt, 0)
beat_mask = beat_mask.repeat_interleave(num_samples_per_prompt, 0)
encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
encoded_chords = encoded_chords.repeat_interleave(num_samples_per_prompt, 0)
chord_mask = chord_mask.repeat_interleave(num_samples_per_prompt, 0)
# print(f"encoded_chords:{encoded_chords.shape}, chord_mask:{chord_mask.shape}, prompt_embeds:{prompt_embeds.shape},boolean_prompt_mask:{boolean_prompt_mask.shape} ")
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=prompt_embeds,
encoder_attention_mask=boolean_prompt_mask,
beat_features = encoded_beats, beat_attention_mask = beat_mask, chord_features = encoded_chords,chord_attention_mask = chord_mask
).sample
# perform guidance
if classifier_free_guidance: #should work for beats and chords too
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
if self.set_from == "pre-trained":
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
return latents
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
# print(len(prompt), 'this is prompt len')
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
def encode_beats_classifier_free(self, beats, num_samples_per_prompt):
device = self.device
with torch.no_grad():
out_beat = []
out_beat_timing = []
out_mask = []
for beat in beats:
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
out_beat.append(tokenized_beats)
out_beat_timing.append(tokenized_beats_timing)
out_mask.append(tokenized_beat_mask)
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) #batch, len_beat
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device)
embedded_beat = embedded_beat.repeat_interleave(num_samples_per_prompt, 0)
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)
uncond_beats = [[[],[]]] * len(beats)
max_length = embedded_beat.shape[1]
with torch.no_grad():
out_beat_unc = []
out_beat_timing_unc = []
out_mask_unc = []
for beat in uncond_beats:
tokenized_beats, tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
out_beat_unc.append(tokenized_beats)
out_beat_timing_unc.append(tokenized_beats_timing)
out_mask_unc.append(tokenized_beat_mask)
out_beat_unc, out_beat_timing_unc, out_mask_unc = torch.tensor(out_beat_unc).to(device), torch.tensor(out_beat_timing_unc).to(device), torch.tensor(out_mask_unc).to(device) #batch, len_beat
embedded_beat_unc = self.beat_embedding_layer(out_beat_unc, out_beat_timing_unc, device)
embedded_beat_unc = embedded_beat_unc.repeat_interleave(num_samples_per_prompt, 0)
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)
embedded_beat = torch.cat([embedded_beat_unc, embedded_beat])
out_mask = torch.cat([out_mask_unc, out_mask])
return embedded_beat, out_mask
def encode_chords_classifier_free(self, chords, chords_time, num_samples_per_prompt):
device = self.device
with torch.no_grad():
out_chord_root = []
out_chord_type = []
out_chord_inv = []
out_chord_timing = []
out_mask = []
for chord, chord_time in zip(chords,chords_time): #batch loop
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
out_chord_root.append(tokenized_chord_root)
out_chord_type.append(tokenized_chord_type)
out_chord_inv.append(tokenized_chord_inv)
out_chord_timing.append(tokenized_chord_time)
out_mask.append(tokenized_chord_mask)
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device)
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device)
embedded_chord = embedded_chord.repeat_interleave(num_samples_per_prompt, 0)
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)
chords_unc=[[]] * len(chords)
chords_time_unc=[[]] * len(chords_time)
max_length = embedded_chord.shape[1]
with torch.no_grad():
out_chord_root_unc = []
out_chord_type_unc = []
out_chord_inv_unc = []
out_chord_timing_unc = []
out_mask_unc = []
for chord, chord_time in zip(chords_unc,chords_time_unc): #batch loop
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
out_chord_root_unc.append(tokenized_chord_root)
out_chord_type_unc.append(tokenized_chord_type)
out_chord_inv_unc.append(tokenized_chord_inv)
out_chord_timing_unc.append(tokenized_chord_time)
out_mask_unc.append(tokenized_chord_mask)
out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, out_mask_unc = torch.tensor(out_chord_root_unc).to(device), torch.tensor(out_chord_type_unc).to(device), torch.tensor(out_chord_inv_unc).to(device), torch.tensor(out_chord_timing_unc).to(device), torch.tensor(out_mask_unc).to(device)
embedded_chord_unc = self.chord_embedding_layer(out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, device)
embedded_chord_unc = embedded_chord_unc.repeat_interleave(num_samples_per_prompt, 0)
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)
embedded_chord = torch.cat([embedded_chord_unc, embedded_chord])
out_mask = torch.cat([out_mask_unc, out_mask])
return embedded_chord, out_mask