|
import os, traceback, sys, parselmouth |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
from my_utils import load_audio |
|
import pyworld |
|
from scipy.io import wavfile |
|
import numpy as np, logging |
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING) |
|
from multiprocessing import Process |
|
|
|
exp_dir = sys.argv[1] |
|
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") |
|
|
|
|
|
def printt(strr): |
|
print(strr) |
|
f.write("%s\n" % strr) |
|
f.flush() |
|
|
|
|
|
n_p = int(sys.argv[2]) |
|
f0method = sys.argv[3] |
|
|
|
|
|
class FeatureInput(object): |
|
def __init__(self, samplerate=16000, hop_size=160): |
|
self.fs = samplerate |
|
self.hop = hop_size |
|
|
|
self.f0_bin = 256 |
|
self.f0_max = 1100.0 |
|
self.f0_min = 50.0 |
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) |
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) |
|
|
|
def compute_f0(self, path, f0_method): |
|
x = load_audio(path, self.fs) |
|
p_len = x.shape[0] // self.hop |
|
if f0_method == "pm": |
|
time_step = 160 / 16000 * 1000 |
|
f0_min = 50 |
|
f0_max = 1100 |
|
f0 = ( |
|
parselmouth.Sound(x, self.fs) |
|
.to_pitch_ac( |
|
time_step=time_step / 1000, |
|
voicing_threshold=0.6, |
|
pitch_floor=f0_min, |
|
pitch_ceiling=f0_max, |
|
) |
|
.selected_array["frequency"] |
|
) |
|
pad_size = (p_len - len(f0) + 1) // 2 |
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0: |
|
f0 = np.pad( |
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" |
|
) |
|
elif f0_method == "harvest": |
|
f0, t = pyworld.harvest( |
|
x.astype(np.double), |
|
fs=self.fs, |
|
f0_ceil=self.f0_max, |
|
f0_floor=self.f0_min, |
|
frame_period=1000 * self.hop / self.fs, |
|
) |
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) |
|
elif f0_method == "dio": |
|
f0, t = pyworld.dio( |
|
x.astype(np.double), |
|
fs=self.fs, |
|
f0_ceil=self.f0_max, |
|
f0_floor=self.f0_min, |
|
frame_period=1000 * self.hop / self.fs, |
|
) |
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) |
|
return f0 |
|
|
|
def coarse_f0(self, f0): |
|
f0_mel = 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( |
|
self.f0_bin - 2 |
|
) / (self.f0_mel_max - self.f0_mel_min) + 1 |
|
|
|
|
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 |
|
f0_coarse = np.rint(f0_mel).astype(int) |
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( |
|
f0_coarse.max(), |
|
f0_coarse.min(), |
|
) |
|
return f0_coarse |
|
|
|
def go(self, paths, f0_method): |
|
if len(paths) == 0: |
|
printt("no-f0-todo") |
|
else: |
|
printt("todo-f0-%s" % len(paths)) |
|
n = max(len(paths) // 5, 1) |
|
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths): |
|
try: |
|
if idx % n == 0: |
|
printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path)) |
|
if ( |
|
os.path.exists(opt_path1 + ".npy") == True |
|
and os.path.exists(opt_path2 + ".npy") == True |
|
): |
|
continue |
|
featur_pit = self.compute_f0(inp_path, f0_method) |
|
np.save( |
|
opt_path2, |
|
featur_pit, |
|
allow_pickle=False, |
|
) |
|
coarse_pit = self.coarse_f0(featur_pit) |
|
np.save( |
|
opt_path1, |
|
coarse_pit, |
|
allow_pickle=False, |
|
) |
|
except: |
|
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc())) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
printt(sys.argv) |
|
featureInput = FeatureInput() |
|
paths = [] |
|
inp_root = "%s/1_16k_wavs" % (exp_dir) |
|
opt_root1 = "%s/2a_f0" % (exp_dir) |
|
opt_root2 = "%s/2b-f0nsf" % (exp_dir) |
|
|
|
os.makedirs(opt_root1, exist_ok=True) |
|
os.makedirs(opt_root2, exist_ok=True) |
|
for name in sorted(list(os.listdir(inp_root))): |
|
inp_path = "%s/%s" % (inp_root, name) |
|
if "spec" in inp_path: |
|
continue |
|
opt_path1 = "%s/%s" % (opt_root1, name) |
|
opt_path2 = "%s/%s" % (opt_root2, name) |
|
paths.append([inp_path, opt_path1, opt_path2]) |
|
|
|
ps = [] |
|
for i in range(n_p): |
|
p = Process( |
|
target=featureInput.go, |
|
args=( |
|
paths[i::n_p], |
|
f0method, |
|
), |
|
) |
|
ps.append(p) |
|
p.start() |
|
for i in range(n_p): |
|
ps[i].join() |
|
|