Upload 2 files
Browse files- app.py +330 -0
- requirements.txt +13 -0
app.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow.keras import layers
|
| 5 |
+
import sentencepiece as spm
|
| 6 |
+
import requests
|
| 7 |
+
from flask import Flask, request, Response, session, jsonify
|
| 8 |
+
from bs4 import BeautifulSoup
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
import uuid
|
| 11 |
+
import os
|
| 12 |
+
import time
|
| 13 |
+
from collections import Counter
|
| 14 |
+
|
| 15 |
+
app = Flask(__name__, static_folder="static")
|
| 16 |
+
app.secret_key = os.urandom(32)
|
| 17 |
+
|
| 18 |
+
# =====================
|
| 19 |
+
# λͺ¨λΈ/ν ν¬λμ΄μ λ€μ΄λ‘λ
|
| 20 |
+
# =====================
|
| 21 |
+
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
| 22 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 23 |
+
|
| 24 |
+
CHAT_MODEL_PATH = hf_hub_download(
|
| 25 |
+
repo_id="Yuchan5386/lamko-prototype",
|
| 26 |
+
filename="Lamko.weights.h5",
|
| 27 |
+
repo_type="model",
|
| 28 |
+
token=hf_token
|
| 29 |
+
)
|
| 30 |
+
CHAT_TOKENIZER_PATH = hf_hub_download(
|
| 31 |
+
repo_id="Yuchan5386/lamko-prototype",
|
| 32 |
+
filename="ko_unigram.model",
|
| 33 |
+
repo_type="model",
|
| 34 |
+
token=hf_token
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
print(CHAT_MODEL_PATH)
|
| 38 |
+
sp = spm.SentencePieceProcessor()
|
| 39 |
+
sp.load(CHAT_TOKENIZER_PATH)
|
| 40 |
+
pad_id = sp.piece_to_id("<pad>") or 0
|
| 41 |
+
start_id = sp.piece_to_id("<start>") or 1
|
| 42 |
+
end_id = sp.piece_to_id("<end>") or 2
|
| 43 |
+
unk_id = sp.piece_to_id("<unk>") or 3
|
| 44 |
+
sep_id = sp.piece_to_id("<sep>")
|
| 45 |
+
vocab_size = sp.get_piece_size()
|
| 46 |
+
max_len = 125
|
| 47 |
+
|
| 48 |
+
def text_to_ids(text):
|
| 49 |
+
return sp.encode(text, out_type=int)
|
| 50 |
+
|
| 51 |
+
def ids_to_text(ids):
|
| 52 |
+
return sp.decode(ids)
|
| 53 |
+
|
| 54 |
+
class SwiGLU(layers.Layer):
|
| 55 |
+
def __init__(self, d_model, f_d=8/3):
|
| 56 |
+
super().__init__()
|
| 57 |
+
hidden_dim = int(d_model * f_d)
|
| 58 |
+
self.proj = layers.Dense(hidden_dim * 2, use_bias=False, dtype='float32')
|
| 59 |
+
self.out = layers.Dense(d_model, use_bias=False, dtype='float32')
|
| 60 |
+
|
| 61 |
+
def call(self, x):
|
| 62 |
+
x_val, x_gate = tf.split(self.proj(x), 2, axis=-1)
|
| 63 |
+
return self.out(x_val * tf.nn.silu(x_gate))
|
| 64 |
+
|
| 65 |
+
class DilatedConvLayer(layers.Layer):
|
| 66 |
+
def __init__(self, d_model, dilation_rate, dropout_rate=0.1):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.conv = layers.Conv1D(
|
| 69 |
+
filters=d_model,
|
| 70 |
+
kernel_size=3,
|
| 71 |
+
dilation_rate=dilation_rate,
|
| 72 |
+
padding='causal',
|
| 73 |
+
use_bias=True,
|
| 74 |
+
kernel_initializer='he_normal',
|
| 75 |
+
dtype='float32'
|
| 76 |
+
)
|
| 77 |
+
self.ln = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
|
| 78 |
+
self.dropout = layers.Dropout(dropout_rate)
|
| 79 |
+
|
| 80 |
+
def call(self, x, training=False):
|
| 81 |
+
residual = x
|
| 82 |
+
x = self.conv(x)
|
| 83 |
+
x = self.ln(x + residual)
|
| 84 |
+
x = self.dropout(x, training=training)
|
| 85 |
+
return x
|
| 86 |
+
|
| 87 |
+
class Lamko(tf.keras.Model):
|
| 88 |
+
def __init__(self, vocab_size, max_seq_len, d_model, n_layers, dropout_rate=0.1):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.token_embedding = layers.Embedding(vocab_size, d_model, dtype='float32')
|
| 91 |
+
self.pos_embedding = layers.Embedding(max_seq_len, d_model, dtype='float32')
|
| 92 |
+
|
| 93 |
+
self.blocks = []
|
| 94 |
+
for i in range(n_layers):
|
| 95 |
+
self.blocks.append(DilatedConvLayer(d_model, 2 ** i, dropout_rate))
|
| 96 |
+
if (i + 1) % 3 == 0:
|
| 97 |
+
self.blocks.append(SwiGLU(d_model))
|
| 98 |
+
self.blocks.append(layers.LayerNormalization(epsilon=1e-5, dtype='float32'))
|
| 99 |
+
|
| 100 |
+
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype='float32')
|
| 101 |
+
|
| 102 |
+
def call(self, x, training=False):
|
| 103 |
+
batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1]
|
| 104 |
+
positions = tf.range(seq_len)[tf.newaxis, :]
|
| 105 |
+
positions = tf.clip_by_value(positions, 0, self.pos_embedding.input_dim - 1)
|
| 106 |
+
|
| 107 |
+
x = self.token_embedding(x) + self.pos_embedding(positions)
|
| 108 |
+
|
| 109 |
+
for block in self.blocks:
|
| 110 |
+
if isinstance(block, SwiGLU):
|
| 111 |
+
x = x + block(x)
|
| 112 |
+
else:
|
| 113 |
+
x = block(x, training=training) if hasattr(block, 'training') else block(x)
|
| 114 |
+
|
| 115 |
+
x = self.ln_f(x)
|
| 116 |
+
logits = tf.matmul(x, self.token_embedding.weights[0], transpose_b=True)
|
| 117 |
+
return logits
|
| 118 |
+
|
| 119 |
+
model = Lamko(vocab_size=vocab_size, max_seq_len=max_len, d_model=384, n_layers=9)
|
| 120 |
+
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)
|
| 121 |
+
_ = model(dummy_input)
|
| 122 |
+
model.load_weights(CHAT_MODEL_PATH)
|
| 123 |
+
print("λͺ¨λΈ κ°μ€μΉ λ‘λ μλ£!")
|
| 124 |
+
|
| 125 |
+
@tf.function(input_signature=[
|
| 126 |
+
tf.TensorSpec(shape=(1, None), dtype=tf.int32), # input_ids
|
| 127 |
+
tf.TensorSpec(shape=(vocab_size,), dtype=tf.int32), # token_counts
|
| 128 |
+
tf.TensorSpec(shape=(), dtype=tf.int32), # current_length
|
| 129 |
+
tf.TensorSpec(shape=(), dtype=tf.float32), # temperature
|
| 130 |
+
tf.TensorSpec(shape=(), dtype=tf.float32), # repetition_penalty
|
| 131 |
+
tf.TensorSpec(shape=(), dtype=tf.float32), # top_p
|
| 132 |
+
tf.TensorSpec(shape=(), dtype=tf.int32), # top_k
|
| 133 |
+
tf.TensorSpec(shape=(), dtype=tf.int32), # min_len
|
| 134 |
+
tf.TensorSpec(shape=(), dtype=tf.int32), # step
|
| 135 |
+
])
|
| 136 |
+
def generate_step(input_ids, token_counts, current_length, temperature, repetition_penalty, top_p, top_k, min_len, step):
|
| 137 |
+
pad_len = max_len - tf.shape(input_ids)[1]
|
| 138 |
+
input_padded = tf.pad(input_ids, [[0,0],[0,pad_len]], constant_values=pad_id)
|
| 139 |
+
logits = model(input_padded, training=False)
|
| 140 |
+
next_logits = logits[0, current_length - 1]
|
| 141 |
+
|
| 142 |
+
penalty = tf.pow(repetition_penalty, tf.cast(token_counts, tf.float32))
|
| 143 |
+
next_logits = next_logits / penalty
|
| 144 |
+
|
| 145 |
+
# μ΅μ κΈΈμ΄μ pad λ§μ€νΉ
|
| 146 |
+
if current_length < min_len:
|
| 147 |
+
next_logits = tf.tensor_scatter_nd_update(next_logits, [[end_id]], [-1e9])
|
| 148 |
+
next_logits = tf.tensor_scatter_nd_update(next_logits, [[pad_id]], [-1e9])
|
| 149 |
+
|
| 150 |
+
# top-k νν°λ§
|
| 151 |
+
if top_k > 0:
|
| 152 |
+
kth_val = tf.math.top_k(next_logits, k=top_k).values[-1]
|
| 153 |
+
mask = next_logits < kth_val
|
| 154 |
+
next_logits = tf.where(mask, -1e9, next_logits)
|
| 155 |
+
|
| 156 |
+
# top-p (nucleus) νν°λ§ + temperature
|
| 157 |
+
next_logits = next_logits / temperature
|
| 158 |
+
probs = tf.nn.softmax(next_logits)
|
| 159 |
+
sorted_probs, sorted_idx = tf.math.top_k(probs, k=vocab_size)
|
| 160 |
+
cum_probs = tf.cumsum(sorted_probs)
|
| 161 |
+
cutoff_mask = cum_probs <= top_p
|
| 162 |
+
cutoff_idx = tf.reduce_sum(tf.cast(cutoff_mask, tf.int32)) + 1
|
| 163 |
+
cutoff_idx = tf.minimum(cutoff_idx, vocab_size)
|
| 164 |
+
filtered_idx = sorted_idx[:cutoff_idx]
|
| 165 |
+
filtered_probs = sorted_probs[:cutoff_idx]
|
| 166 |
+
filtered_probs = filtered_probs / tf.reduce_sum(filtered_probs)
|
| 167 |
+
|
| 168 |
+
# πΉ 50%λ argmax, 50%λ μνλ§
|
| 169 |
+
rand_val = tf.random.uniform([], 0, 1)
|
| 170 |
+
def sample():
|
| 171 |
+
sampled_id = tf.random.categorical(tf.math.log([filtered_probs]), 1)[0,0]
|
| 172 |
+
return filtered_idx[sampled_id]
|
| 173 |
+
def argmax():
|
| 174 |
+
return filtered_idx[tf.argmax(filtered_probs)]
|
| 175 |
+
sampled_id = tf.cond(rand_val < 0.5536, argmax, sample)
|
| 176 |
+
sampled_id = tf.cast(sampled_id, tf.int32)
|
| 177 |
+
|
| 178 |
+
# token_counts μ
λ°μ΄νΈ
|
| 179 |
+
token_counts = tf.tensor_scatter_nd_add(token_counts, [[sampled_id]], [1])
|
| 180 |
+
return sampled_id, token_counts
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# =====================
|
| 184 |
+
# μ€νΈλ¦¬λ° μμ±κΈ° (CPU μ΅μ ν λ²μ )
|
| 185 |
+
# =====================
|
| 186 |
+
def generate_text_streaming(model, prompt, max_len=115, max_gen=100,
|
| 187 |
+
temperature=0.75, min_len=20,
|
| 188 |
+
repetition_penalty=1.2, top_p=0.9, top_k=50):
|
| 189 |
+
model_input = text_to_ids(f"<start> {prompt} <sep>")
|
| 190 |
+
model_input = model_input[:max_len]
|
| 191 |
+
generated = list(model_input)
|
| 192 |
+
start_output_idx = len(model_input)
|
| 193 |
+
|
| 194 |
+
# TF λ³μλ‘ ν ν° μΉ΄μ΄νΈ κ΄λ¦¬
|
| 195 |
+
token_counts_np = np.zeros(vocab_size, dtype=np.int32)
|
| 196 |
+
for t in generated:
|
| 197 |
+
token_counts_np[t] += 1
|
| 198 |
+
token_counts = tf.Variable(token_counts_np, dtype=tf.int32)
|
| 199 |
+
|
| 200 |
+
prev_decoded = ""
|
| 201 |
+
|
| 202 |
+
for step in range(max_gen):
|
| 203 |
+
input_tensor = tf.expand_dims(generated, axis=0) # [1, seq_len]
|
| 204 |
+
|
| 205 |
+
sampled_id, token_counts = generate_step(
|
| 206 |
+
input_tensor,
|
| 207 |
+
token_counts,
|
| 208 |
+
tf.constant(len(generated), dtype=tf.int32),
|
| 209 |
+
tf.constant(temperature, dtype=tf.float32),
|
| 210 |
+
tf.constant(repetition_penalty, dtype=tf.float32),
|
| 211 |
+
tf.constant(top_p, dtype=tf.float32),
|
| 212 |
+
tf.constant(top_k, dtype=tf.int32),
|
| 213 |
+
tf.constant(min_len, dtype=tf.int32),
|
| 214 |
+
tf.constant(step, dtype=tf.int32)
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
sampled_id = int(sampled_id.numpy())
|
| 218 |
+
generated.append(sampled_id)
|
| 219 |
+
|
| 220 |
+
# λμ½λ©μ μΆλ ₯ μμ μλ§
|
| 221 |
+
if len(generated) > start_output_idx:
|
| 222 |
+
decoded_full = sp.decode(generated[start_output_idx:])
|
| 223 |
+
decoded_full = decoded_full.replace("β", " ").strip()
|
| 224 |
+
for t in ["<start>", "<sep>", "<end>"]:
|
| 225 |
+
decoded_full = decoded_full.replace(t, "")
|
| 226 |
+
decoded_full = decoded_full.lstrip(",!?.λμ ")
|
| 227 |
+
|
| 228 |
+
new_output = decoded_full[len(prev_decoded):]
|
| 229 |
+
if new_output:
|
| 230 |
+
yield new_output
|
| 231 |
+
prev_decoded = decoded_full
|
| 232 |
+
|
| 233 |
+
# μ’
λ£ μ‘°κ±΄
|
| 234 |
+
if len(generated) >= min_len and (sampled_id == end_id or decoded_full.endswith(('.', '!', '?'))):
|
| 235 |
+
break
|
| 236 |
+
|
| 237 |
+
token_map = {
|
| 238 |
+
"νμ΄": "μλ
νμΈμ!",
|
| 239 |
+
"γ
γ
": "μλ
νμΈμ!",
|
| 240 |
+
"νμ΄~": "μλ
νμΈμ!",
|
| 241 |
+
"μλ
": "μλ
νμΈμ!",
|
| 242 |
+
"μλ
!": "μλ
νμΈμ!",
|
| 243 |
+
"μκ°": "μκ°. λμ€μ 보μ",
|
| 244 |
+
"μ κ°": "μ κ°. λμ€μ 보μ"
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
def preprocess_text(text):
|
| 248 |
+
for key, val in token_map.items():
|
| 249 |
+
text = text.replace(key, val)
|
| 250 |
+
return text
|
| 251 |
+
|
| 252 |
+
# =====================
|
| 253 |
+
@app.route('/')
|
| 254 |
+
def index():
|
| 255 |
+
return app.send_static_file('index.html')
|
| 256 |
+
|
| 257 |
+
@app.route('/api/search')
|
| 258 |
+
def search_api():
|
| 259 |
+
query = request.args.get("query", "").strip()
|
| 260 |
+
if not query:
|
| 261 |
+
return jsonify({"results": []})
|
| 262 |
+
|
| 263 |
+
search_url = f"https://ko.wikipedia.org/w/index.php?search={query}"
|
| 264 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
| 265 |
+
resp = requests.get(search_url, headers=headers)
|
| 266 |
+
soup = BeautifulSoup(resp.text, "html.parser")
|
| 267 |
+
|
| 268 |
+
results = []
|
| 269 |
+
|
| 270 |
+
# 1. κ²μ κ²°κ³Ό 리μ€νΈκ° μλ κ²½μ°
|
| 271 |
+
search_items = soup.select(".mw-search-result-heading a")
|
| 272 |
+
if search_items:
|
| 273 |
+
for item in search_items[:5]:
|
| 274 |
+
title = item.text
|
| 275 |
+
link = "https://ko.wikipedia.org" + item.get("href")
|
| 276 |
+
snippet_tag = item.find_parent().find("div", class_="searchresult")
|
| 277 |
+
snippet = snippet_tag.text.strip() if snippet_tag else ""
|
| 278 |
+
results.append({"title": title, "link": link, "snippet": snippet})
|
| 279 |
+
|
| 280 |
+
# 2. κ²μμ΄μ μ νν μΌμΉνλ νμ΄μ§λ‘ λ°λ‘ μ΄λν κ²½μ°
|
| 281 |
+
elif soup.select("#firstHeading"):
|
| 282 |
+
title = soup.select_one("#firstHeading").text.strip()
|
| 283 |
+
link = resp.url
|
| 284 |
+
# λ¬Έμ 첫 λ²μ§Έ λ¨λ½ μΆμΆ
|
| 285 |
+
content_paragraph = soup.select_one(".mw-parser-output > p")
|
| 286 |
+
snippet = content_paragraph.text.strip() if content_paragraph else ""
|
| 287 |
+
results.append({"title": title, "link": link, "snippet": snippet})
|
| 288 |
+
|
| 289 |
+
return jsonify({"results": results})
|
| 290 |
+
|
| 291 |
+
@app.before_request
|
| 292 |
+
def ensure_user_id():
|
| 293 |
+
if 'user_id' not in session:
|
| 294 |
+
session['user_id'] = str(uuid.uuid4())
|
| 295 |
+
|
| 296 |
+
@app.route('/api/chat', methods=['GET','POST'])
|
| 297 |
+
def chat_api():
|
| 298 |
+
user_msg = (request.json.get("message") if request.method=="POST" else request.args.get("message") or "").strip()
|
| 299 |
+
if not user_msg:
|
| 300 |
+
return Response((f'data: {{"error":"λ©μμ§λ₯Ό μ
λ ₯ν΄μ£ΌμΈμ."}}\n\n' for _ in range(1)),
|
| 301 |
+
mimetype='text/event-stream')
|
| 302 |
+
user_id = session['user_id']
|
| 303 |
+
|
| 304 |
+
user_msg = preprocess_text(user_msg)
|
| 305 |
+
|
| 306 |
+
def gen():
|
| 307 |
+
try:
|
| 308 |
+
# μΈλΆ κ²μ μ κ±°, search_resultλ νμ λΉ λ¬Έμμ΄
|
| 309 |
+
search_result = ""
|
| 310 |
+
for token in generate_text_streaming(
|
| 311 |
+
model, user_msg,
|
| 312 |
+
max_len=max_len,
|
| 313 |
+
max_gen=115,
|
| 314 |
+
temperature=0.8,
|
| 315 |
+
min_len=10,
|
| 316 |
+
repetition_penalty=1.1,
|
| 317 |
+
top_p=0.9,
|
| 318 |
+
top_k=5
|
| 319 |
+
):
|
| 320 |
+
safe_token = json.dumps(token)
|
| 321 |
+
yield f'data: {{"char":{safe_token}}}\n\n'
|
| 322 |
+
|
| 323 |
+
yield 'data: {"done":true}\n\n'
|
| 324 |
+
except Exception as e:
|
| 325 |
+
yield f'data: {{"error":{json.dumps(str(e))}}}\n\n'
|
| 326 |
+
|
| 327 |
+
return Response(gen(), mimetype='text/event-stream')
|
| 328 |
+
|
| 329 |
+
if __name__=="__main__":
|
| 330 |
+
app.run(host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pandas
|
| 3 |
+
flask
|
| 4 |
+
huggingface-hub
|
| 5 |
+
sympy
|
| 6 |
+
requests
|
| 7 |
+
tensorflow
|
| 8 |
+
pyarrow
|
| 9 |
+
beautifulsoup4
|
| 10 |
+
sentencepiece
|
| 11 |
+
ddgs
|
| 12 |
+
faiss-cpu
|
| 13 |
+
tokenizers
|