Alpha108 commited on
Commit
ec06ad0
·
verified ·
1 Parent(s): 9a6b821

Create data_utils.py

Browse files
Files changed (1) hide show
  1. data_utils.py +104 -0
data_utils.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import math
3
+ import pandas as pd
4
+ from typing import List, Tuple
5
+
6
+ STOPWORDS = set("""
7
+ a an and the or for nor but so yet of to in on with at by from as is are was were be being been
8
+ i you he she it we they them us our your their this that these those here there
9
+ """.split())
10
+
11
+ def dedupe_sentences(text: str) -> str:
12
+ parts = re.split(r'(?<=[.!?])\s+', text.strip())
13
+ seen, out = set(), []
14
+ for p in parts:
15
+ norm = re.sub(r'\s+', ' ', p.strip().lower())
16
+ if norm and norm not in seen:
17
+ seen.add(norm); out.append(p.strip())
18
+ return " ".join(out).strip()
19
+
20
+ def strip_labels(text: str) -> str:
21
+ patterns = [r'^\s*(hook|body|takeaway|cta):\s*', r'^\s*(Hook|Body|Takeaway|CTA):\s*']
22
+ lines = text.splitlines()
23
+ cleaned = []
24
+ for line in lines:
25
+ L = line
26
+ for p in patterns:
27
+ L = re.sub(p, '', L)
28
+ cleaned.append(L)
29
+ return "\n".join(cleaned).strip()
30
+
31
+ def load_posts(file) -> pd.DataFrame:
32
+ name = file.name.lower()
33
+ if name.endswith(".csv"):
34
+ df = pd.read_csv(file)
35
+ elif name.endswith(".json"):
36
+ df = pd.read_json(file, lines=False)
37
+ else:
38
+ raise ValueError("Upload CSV or JSON.")
39
+ cand = [c for c in df.columns if c.lower() in ("text","post","content","body")]
40
+ if not cand:
41
+ raise ValueError("Dataset must include 'text' (or post/content/body).")
42
+ if "text" not in df.columns:
43
+ df["text"] = df[cand[0]]
44
+ df["text"] = df["text"].fillna("").astype(str)
45
+ return df[["text"]]
46
+
47
+ def simple_rake(text, min_len=2, max_len=3, top_k=12):
48
+ words = re.findall(r"[A-Za-z0-9#+\-_/']+", text.lower())
49
+ phrases, cur = [], []
50
+ for w in words:
51
+ if w in STOPWORDS:
52
+ if cur:
53
+ phrases.append(" ".join(cur)); cur = []
54
+ else:
55
+ cur.append(w)
56
+ if cur:
57
+ phrases.append(" ".join(cur))
58
+ freq, degree, scores = {}, {}, {}
59
+ for ph in phrases:
60
+ toks = ph.split()
61
+ for t in toks:
62
+ freq[t] = freq.get(t,0)+1
63
+ degree[t] = degree.get(t,0)+(len(toks)-1)
64
+ for ph in phrases:
65
+ scores[ph] = sum((degree.get(t,0)+1)/ (freq.get(t,1)) for t in ph.split())
66
+ ranked = sorted(scores.items(), key=lambda x: x[1], reverse=True)
67
+ return [p for p,_ in ranked if min_len <= len(p.split()) <= max_len][:top_k]
68
+
69
+ def tfidf_builder(texts: List[str], top_k=8):
70
+ docs = [re.findall(r"[A-Za-z0-9#+\-_/']+", t.lower()) for t in texts]
71
+ vocab = {}
72
+ for d in docs:
73
+ for w in set(d):
74
+ vocab[w] = vocab.get(w,0)+1
75
+ N = len(docs)
76
+ def score(text):
77
+ doc = re.findall(r"[A-Za-z0-9#+\-_/']+", text.lower())
78
+ tf = {}
79
+ for w in doc:
80
+ tf[w] = tf.get(w,0)+1
81
+ scores = {}
82
+ for w,c in tf.items():
83
+ df = vocab.get(w,1)
84
+ idf = math.log((N+1)/(df+1))+1
85
+ scores[w] = (c/len(doc))*idf
86
+ ranked = sorted(scores.items(), key=lambda x: x[1], reverse=True)
87
+ return [w for w,_ in ranked[:top_k]]
88
+ return score
89
+
90
+ def extract_keywords(topic: str, df: pd.DataFrame|None) -> List[str]:
91
+ if df is not None and len(df):
92
+ sample = df["text"].sample(min(30, len(df)), random_state=42).tolist()
93
+ rake_kw = simple_rake(" ".join(sample + [topic]), min_len=2, max_len=3, top_k=12)
94
+ tfidf_fn = tfidf_builder(df["text"].tolist(), top_k=8)
95
+ kw2 = tfidf_fn(topic + " " + " ".join(sample[:5]))
96
+ raw = rake_kw + kw2
97
+ else:
98
+ raw = simple_rake(topic, min_len=1, max_len=2, top_k=8)
99
+ seen, out = set(), []
100
+ for k in raw:
101
+ k2 = re.sub(r"\s+"," ",k.strip().lower())
102
+ if k2 and k2 not in seen:
103
+ seen.add(k2); out.append(k2)
104
+ return out[:12]