Spaces:
Sleeping
Sleeping
# Let us first import all the necessary libraries required for this project | |
import tensorflow as tf | |
import torch | |
import cv2 | |
import sklearn | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import os | |
from torchvision import datasets, transforms, models | |
from torch.utils.data import DataLoader, Dataset | |
import torch.nn as nn | |
import torch.optim as optim | |
import torchvision | |
import torch.nn.functional as F | |
from PIL import Image | |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, roc_curve, auc | |
# Later on, as per requirement, more libraries wil be imported | |
import gradio as gr | |
def adjust_brightness_contrast(image, alpha=1.2, beta=50): | |
""" | |
Adjusting brightness and contrast of the image. | |
Parameters: | |
- image: Input image (numpy array). | |
- alpha: Contrast control [1.0-3.0]. | |
- beta: Brightness control [0-100]. | |
Returns: | |
- Adjusted image. | |
""" | |
return cv2.convertScaleAbs(image, alpha=alpha, beta=beta) | |
def apply_histogram_equalization(image): | |
"""Applying histogram equalization to enhance contrast.""" | |
channels = cv2.split(image) | |
eq_channels = [cv2.equalizeHist(ch) for ch in channels] | |
return cv2.merge(eq_channels) | |
def apply_clahe(image, clip_limit=2.0, tile_grid_size=(8, 8)): | |
"""Applying CLAHE for local contrast enhancement.""" | |
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size) | |
channels = cv2.split(image) | |
clahe_channels = [clahe.apply(ch) for ch in channels] | |
return cv2.merge(clahe_channels) | |
def apply_gaussian_blur(image, kernel_size=(3, 3)): | |
"""Applying Gaussian blur for denoising.""" | |
return cv2.GaussianBlur(image, kernel_size, 0) | |
def apply_sharpening(image): | |
"""Applying edge enhancement using a sharpening filter.""" | |
kernel = np.array([[0, -1, 0], | |
[-1, 5, -1], | |
[0, -1, 0]]) | |
return cv2.filter2D(image, -1, kernel) | |
def normalize_image(image): | |
"""Normalizing the image to zero mean and unit variance.""" | |
image = (image - np.mean(image)) / np.std(image) | |
return image | |
def resize_image(image, width, height): | |
"""Resizing the image to the desired dimensions with anti-aliasing.""" | |
return cv2.resize(image, (width, height), interpolation=cv2.INTER_CUBIC) | |
def preprocess_single_image(pil_image, img_height=224, img_width=224): | |
""" | |
Preprocessing a single image as per the training pipeline. | |
Parameters: | |
- pil_image: Input PIL image. | |
- img_height, img_width: Dimensions to resize the image. | |
Returns: | |
- Preprocessed image tensor. | |
""" | |
# Converting PIL image to numpy array | |
image = np.array(pil_image) | |
# Ensuring the image is in RGB format | |
if len(image.shape) == 2 or image.shape[2] == 1: # Grayscale image | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) | |
# Applying preprocessing steps | |
image = apply_histogram_equalization(image) | |
image = apply_clahe(image) | |
image = apply_gaussian_blur(image) | |
image = apply_sharpening(image) | |
image = adjust_brightness_contrast(image, alpha=1.2, beta=50) | |
# Resizing and normalization | |
image = resize_image(image, img_width, img_height) | |
image = normalize_image(image) | |
# Converting to PIL image and applying transformations | |
image = Image.fromarray(image.astype(np.uint8)) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
image_tensor = transform(image).unsqueeze(0) # Adding batch dimension | |
return image_tensor | |
# Detecting GPU if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
from torchvision.models import densenet121 | |
from torchvision.transforms import Resize | |
# Simplified ViT-like transformer module | |
class SimpleViT(nn.Module): | |
def __init__(self, input_dim, num_heads, mlp_dim, num_layers): | |
super(SimpleViT, self).__init__() | |
# Reduced TransformerEncoder layer complexity | |
self.transformer_blocks = nn.ModuleList([ | |
nn.TransformerEncoderLayer( | |
d_model=input_dim, | |
nhead=num_heads, | |
dim_feedforward=mlp_dim, | |
dropout=0.1 | |
) for _ in range(num_layers) | |
]) | |
def forward(self, x): | |
# Flattening the spatial dimensions | |
B, C, H, W = x.shape | |
x = x.flatten(2).permute(2, 0, 1) # Reshaping for transformer | |
for block in self.transformer_blocks: | |
x = block(x) | |
x = x.permute(1, 2, 0).reshape(B, C, H, W) # Restoring the original shape | |
return x | |
# Adjusted Hybrid DenseNet + Simplified ViT Architecture | |
class LightweightHybridDenseNetViT(nn.Module): | |
def __init__(self): | |
super(LightweightHybridDenseNetViT, self).__init__() | |
# Loading a lighter DenseNet backbone | |
self.densenet = densenet121(pretrained=False) # Base DenseNet backbone | |
# Reducing the output channels from DenseNet to smaller dimensions | |
self.conv_reduce = nn.Conv2d(1024, 64, kernel_size=1) # Fewer channels | |
# ViT processing module with reduced complexity | |
self.vit = SimpleViT(input_dim=64, num_heads=2, mlp_dim=128, num_layers=1) | |
# Task-specific classification heads | |
self.fc_pneumonia = nn.Linear(64, 1) # Binary classification (Pneumonia) | |
self.fc_tuberculosis = nn.Linear(64, 1) # Binary classification (Tuberculosis) | |
self.fc_lung_cancer = nn.Linear(64, 4) # Multi-class output (Lung Cancer) | |
def forward(self, x): | |
# Extracting DenseNet features | |
x = self.densenet.features(x) # Extracting DenseNet feature maps | |
x = self.conv_reduce(x) # Reducing the number of feature channels | |
# Passing through simplified ViT module | |
x = self.vit(x) | |
# Applying Global Average Pooling (GAP) | |
x = x.mean(dim=[2, 3]) # Pooling across spatial dimensions | |
# Task-specific classification | |
pneumonia_output = torch.sigmoid(self.fc_pneumonia(x)) # Binary sigmoid output | |
tuberculosis_output = torch.sigmoid(self.fc_tuberculosis(x)) # Binary sigmoid output | |
lung_cancer_output = self.fc_lung_cancer(x) # Multi-class logits | |
return pneumonia_output, tuberculosis_output, lung_cancer_output | |
# Loading the saved model | |
img_size = 224 # Matching the dimensions used during training | |
patch_size = 8 | |
model = LightweightHybridDenseNetViT().to(device) | |
model.load_state_dict(torch.load("model_FINAL.pth", map_location=device)) # Mapping to the correct device | |
model.to(device) # Moving the model to GPU/CPU | |
model.eval() # Setting to evaluation mode | |
# Function to pre-process the image and perform inference | |
def predict_image(image): | |
""" | |
Predicts the probabilities of Pneumonia, TB, and Lung Cancer from the input image. | |
""" | |
# Preprocessing the image | |
image_tensor = preprocess_single_image(image, img_height=224, img_width=224) | |
image_tensor = image_tensor.to(device) | |
# Performing inference | |
with torch.no_grad(): | |
pneumonia_output, tb_output, lung_cancer_output = model(image_tensor) | |
# Getting the probabilities | |
pneumonia_prob = pneumonia_output.item() | |
tb_prob = tb_output.item() | |
lung_cancer_probs = F.softmax(lung_cancer_output, dim=1).squeeze().tolist() | |
# Class names for lung cancer | |
lung_cancer_classes = [ | |
"adenocarcinoma_left.lower.lobe", | |
"large.cell.carcinoma_left.hilum", | |
"NORMAL", | |
"squamous.cell.carcinoma_left.hilum" | |
] | |
# Preparing the result as a dictionary | |
result = { | |
"Pneumonia Probability": f"{pneumonia_prob:.4f}", | |
"TB Probability": f"{tb_prob:.4f}", | |
"Lung Cancer Probabilities": {class_name: f"{prob:.4f}" for class_name, prob in zip(lung_cancer_classes, lung_cancer_probs)} | |
} | |
return result | |
# Gradio Interface | |
iface = gr.Interface(fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.JSON(), | |
title="Probabilistic Lung Disease Detection", | |
description="An AI-powered tool that analyzes and predicts probabilities for lung diseases, including Pneumonia, Tuberculosis, and Lung Cancer.") | |
iface.launch() |