|
|
|
import os |
|
from huggingface_hub import hf_hub_download |
|
|
|
from PIL import Image |
|
import numpy as np |
|
import torch |
|
from torch.autograd import Variable |
|
from torchvision import transforms |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
|
|
device = None |
|
ISNetDIS = None |
|
normalize = None |
|
im_preprocess = None |
|
hypar = None |
|
net = None |
|
|
|
|
|
def init(): |
|
global device, ISNetDIS, normalize, im_preprocess, hypar, net |
|
|
|
print("Initializing segmenter...") |
|
|
|
if not os.path.exists("saved_models"): |
|
os.mkdir("saved_models") |
|
os.mkdir("git") |
|
os.system( |
|
"git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS") |
|
hf_hub_download(repo_id="NimaBoscarino/IS-Net_DIS-general-use", |
|
filename="isnet-general-use.pth", local_dir="saved_models") |
|
os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__") |
|
os.system( |
|
"mv git/xuebinqin/DIS/IS-Net/* .") |
|
|
|
import models |
|
import data_loader_cache |
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
ISNetDIS = models.ISNetDIS |
|
normalize = data_loader_cache.normalize |
|
im_preprocess = data_loader_cache.im_preprocess |
|
|
|
|
|
hypar = {} |
|
|
|
|
|
hypar["model_path"] = "./saved_models" |
|
|
|
hypar["restore_model"] = "isnet-general-use.pth" |
|
|
|
hypar["interm_sup"] = False |
|
|
|
|
|
|
|
hypar["model_digit"] = "full" |
|
hypar["seed"] = 0 |
|
|
|
|
|
hypar["cache_size"] = [1024, 1024] |
|
|
|
|
|
|
|
hypar["input_size"] = [1024, 1024] |
|
|
|
hypar["crop_size"] = [1024, 1024] |
|
|
|
hypar["model"] = ISNetDIS() |
|
|
|
|
|
net = build_model(hypar, device) |
|
|
|
|
|
class GOSNormalize(object): |
|
''' |
|
Normalize the Image using torch.transforms |
|
''' |
|
|
|
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): |
|
self.mean = mean |
|
self.std = std |
|
|
|
def __call__(self, image): |
|
image = normalize(image, self.mean, self.std) |
|
return image |
|
|
|
|
|
transform = transforms.Compose( |
|
[GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])]) |
|
|
|
|
|
def load_image(im_pil, hypar): |
|
im = np.array(im_pil) |
|
im, im_shp = im_preprocess(im, hypar["cache_size"]) |
|
im = torch.divide(im, 255.0) |
|
shape = torch.from_numpy(np.array(im_shp)) |
|
|
|
return transform(im).unsqueeze(0), shape.unsqueeze(0) |
|
|
|
|
|
def build_model(hypar, device): |
|
net = hypar["model"] |
|
|
|
|
|
if (hypar["model_digit"] == "half"): |
|
net.half() |
|
for layer in net.modules(): |
|
if isinstance(layer, nn.BatchNorm2d): |
|
layer.float() |
|
|
|
net.to(device) |
|
|
|
if (hypar["restore_model"] != ""): |
|
net.load_state_dict(torch.load( |
|
hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) |
|
net.to(device) |
|
net.eval() |
|
return net |
|
|
|
|
|
def predict(net, inputs_val, shapes_val, hypar, device): |
|
''' |
|
Given an Image, predict the mask |
|
''' |
|
net.eval() |
|
|
|
if (hypar["model_digit"] == "full"): |
|
inputs_val = inputs_val.type(torch.FloatTensor) |
|
else: |
|
inputs_val = inputs_val.type(torch.HalfTensor) |
|
|
|
inputs_val_v = Variable(inputs_val, requires_grad=False).to( |
|
device) |
|
|
|
ds_val = net(inputs_val_v)[0] |
|
|
|
|
|
pred_val = ds_val[0][0, :, :, :] |
|
|
|
|
|
pred_val = torch.squeeze(F.upsample(torch.unsqueeze( |
|
pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear')) |
|
|
|
ma = torch.max(pred_val) |
|
mi = torch.min(pred_val) |
|
pred_val = (pred_val-mi)/(ma-mi) |
|
|
|
if device == 'cuda': |
|
torch.cuda.empty_cache() |
|
|
|
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) |
|
|
|
|
|
def segment(image): |
|
image_tensor, orig_size = load_image(image, hypar) |
|
mask = predict(net, image_tensor, orig_size, hypar, device) |
|
|
|
mask = Image.fromarray(mask).convert('L') |
|
im_rgb = image.convert("RGB") |
|
|
|
cropped = im_rgb.copy() |
|
cropped.putalpha(mask) |
|
|
|
return [cropped, mask] |
|
|