Spaces:
Sleeping
Sleeping
import numpy as np | |
import io | |
import os | |
import logging | |
import collections | |
import tempfile | |
from langchain.document_loaders import UnstructuredFileLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.document_loaders import PDFMinerPDFasHTMLLoader | |
from bs4 import BeautifulSoup | |
import re | |
from langchain.docstore.document import Document | |
import unstructured | |
from unstructured.partition.docx import partition_docx | |
from unstructured.partition.auto import partition | |
from transformers import AutoTokenizer | |
import pandas as pd | |
MODEL = "thenlper/gte-base" | |
CHUNK_SIZE = 1000 | |
CHUNK_OVERLAP = 200 | |
embeddings = HuggingFaceEmbeddings( | |
model_name=MODEL, | |
cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME") | |
) | |
model_id = "mistralai/Mistral-7B-Instruct-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, | |
padding_side="left" | |
) | |
text_splitter = CharacterTextSplitter( | |
separator = "\n", | |
chunk_size = CHUNK_SIZE, | |
chunk_overlap = CHUNK_OVERLAP, | |
length_function = len, | |
) | |
## PDF Functions | |
def group_text_by_font_size(content): | |
cur_fs = [] | |
cur_text = '' | |
cur_page = -1 | |
cur_c = content[0] | |
multi_fs = False | |
snippets = [] # first collect all snippets that have the same font size | |
for c in content: | |
# print(f"c={c}\n\n") | |
if c.find('a') != None and c.find('a').get('name'): | |
cur_page = int(c.find('a').get('name')) | |
sp_list = c.find_all('span') | |
if not sp_list: | |
continue | |
for sp in sp_list: | |
# print(f"sp={sp}\n\n") | |
if not sp: | |
continue | |
st = sp.get('style') | |
if not st: | |
continue | |
fs = re.findall('font-size:(\d+)px',st) | |
# print(f"fs={fs}\n\n") | |
if not fs: | |
continue | |
fs = [int(fs[0])] | |
if len(cur_fs)==0: | |
cur_fs = fs | |
if fs == cur_fs: | |
cur_text += sp.text | |
elif not sp.find('br') and cur_c==c: | |
cur_text += sp.text | |
cur_fs.extend(fs) | |
multi_fs = True | |
elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line | |
cur_fs.extend(fs) | |
snippets.append((cur_text+sp.text,max(cur_fs), cur_page)) | |
cur_fs = [] | |
cur_text = '' | |
cur_c = c | |
multi_fs = False | |
else: | |
snippets.append((cur_text,max(cur_fs), cur_page)) | |
cur_fs = fs | |
cur_text = sp.text | |
cur_c = c | |
multi_fs = False | |
snippets.append((cur_text,max(cur_fs), cur_page)) | |
return snippets | |
def get_titles_fs(fs_list): | |
filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]] | |
return sorted(filtered_fs_list, reverse=True) | |
def calculate_total_characters(snippets): | |
font_sizes = {} #dictionary to store font-size and total characters | |
for text, font_size, _ in snippets: | |
#remove newline# and digits | |
cleaned_text = text.replace('\n', '') | |
#cleaned_text = re.sub(r'\d+', '', cleaned_text) | |
total_characters = len(cleaned_text) | |
#update the dictionary | |
if font_size in font_sizes: | |
font_sizes[font_size] += total_characters | |
else: | |
font_sizes[font_size] = total_characters | |
#convert the dictionary into a sorted list of tuples | |
size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True) | |
return size_charac_list | |
def create_documents(source, snippets, font_sizes): | |
docs = [] | |
titles_fs = get_titles_fs(font_sizes) | |
for snippet in snippets: | |
cur_fs = snippet[1] | |
if cur_fs>font_sizes[0][0] and len(snippet[0])>2: | |
content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace(" ", " ") | |
category = "Title" | |
else: | |
content = snippet[0].replace(" ", " ") | |
category = "Paragraph" | |
metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]} | |
categories = source.split("/") | |
cat_update="" | |
if len(categories)>4: | |
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]} | |
elif len(categories)>3: | |
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]} | |
elif len(categories)>2: | |
cat_update = {"file_category":categories[1]} | |
metadata.update(cat_update) | |
docs.append(Document(page_content=content, metadata=metadata)) | |
return docs | |
## Group Chunks docx or pdf | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def group_chunks_by_section(chunks, min_chunk_size=512): | |
filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed | |
#print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}") | |
new_chunks = [] | |
seen_paragraph = False | |
new_title = True #switches when there is a new paragraph to create a new chunk | |
for i, chunk in enumerate(filtered_chunks): | |
# print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}") | |
if new_title: | |
#print(f"<-- NEW title DETECTED -->") | |
new_chunk = chunk | |
new_title = False | |
add_content = False | |
new_chunk.metadata['titles'] = "" | |
#print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n title: {new_chunk.metadata['title']}") | |
if chunk.metadata['category'].lower() =='title': | |
new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ " | |
else: | |
#Activates when a paragraph is seen after one or more titles | |
seen_paragraph = True | |
#Avoid adding the title 2 times to the page content | |
if add_content:#and chunk.page_content not in new_chunk.page_content | |
new_chunk.page_content += f"\n{chunk.page_content}" | |
#edit the end_page number, the last one keeps its place | |
try: | |
new_chunk.metadata['end_page'] = chunk.metadata['page_number'] | |
except: | |
print("", end="") | |
#print("Exception: No page number in metadata") | |
add_content = True | |
#If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk | |
try: | |
#If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document | |
if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size: | |
if 'category' in new_chunk.metadata: | |
new_chunk.metadata.pop('category') | |
new_chunks.append(new_chunk) | |
new_title = True | |
seen_paragraph = False | |
#index out of range | |
except: | |
new_chunks.append(new_chunk) | |
#print('🆘 Gone through all chunks 🆘') | |
break | |
return new_chunks | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
## Split documents by font | |
def split_pdf(file_path, folder): | |
loader = PDFMinerPDFasHTMLLoader(file_path) | |
data = loader.load()[0] # entire pdf is loaded as a single Document | |
soup = BeautifulSoup(data.page_content,'html.parser') | |
content = soup.find_all('div')#List of all elements in div tags | |
try: | |
snippets = group_text_by_font_size(content) | |
except Exception as e: | |
print("ERROR WHILE GROUPING BY FONT SIZE", e) | |
snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)] | |
font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size | |
chunks = create_documents(file_path, snippets, font_sizes) | |
return chunks | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_docx(file_path, folder): | |
chunks_elms = partition_docx(filename=file_path) | |
chunks = [] | |
file_categories = file_path.split("/") | |
for chunk_elm in chunks_elms: | |
category = chunk_elm.category | |
if category == "Title": | |
chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict()) | |
else: | |
chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict()) | |
metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]} | |
cat_update="" | |
if len(file_categories)>4: | |
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]} | |
elif len(file_categories)>3: | |
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]} | |
elif len(file_categories)>2: | |
cat_update = {"file_category":file_categories[1]} | |
metadata.update(cat_update) | |
chunk.metadata.update(metadata) | |
chunks.append(chunk) | |
return chunks | |
# Load the index of documents (if it has already been built) | |
def rebuild_index(input_folder, output_folder): | |
paths_time = [] | |
to_keep = set() | |
print(f'number of files {len(paths_time)}') | |
if len(output_folder.list_paths_in_partition()) > 0: | |
with tempfile.TemporaryDirectory() as temp_dir: | |
for f in output_folder.list_paths_in_partition(): | |
with output_folder.get_download_stream(f) as stream: | |
with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2: | |
f2.write(stream.read()) | |
index = FAISS.load_local(temp_dir, embeddings) | |
to_remove = [] | |
logging.info(f"{len(index.docstore._dict)} vectors loaded") | |
for idx, doc in index.docstore._dict.items(): | |
source = (doc.metadata["source"], doc.metadata["last_modified"]) | |
if source in paths_time: | |
# Identify documents already indexed and still present in the source folder | |
to_keep.add(source) | |
else: | |
# Identify documents removed from the source folder | |
to_remove.append(idx) | |
docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()} | |
# Remove documents that have been deleted from the source folder | |
vectors_to_remove = [] | |
for idx in to_remove: | |
del index.docstore._dict[idx] | |
ind = docstore_id_to_index[idx] | |
del index.index_to_docstore_id[ind] | |
vectors_to_remove.append(ind) | |
index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64)) | |
index.index_to_docstore_id = { | |
i: ind | |
for i, ind in enumerate(index.index_to_docstore_id.values()) | |
} | |
logging.info(f"{len(to_remove)} vectors removed") | |
else: | |
index = None | |
to_add = [path[0] for path in paths_time if path not in to_keep] | |
print(f'to_keep: {to_keep}') | |
print(f'to_add: {to_add}') | |
return index, to_add | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_chunks_by_tokens(documents, max_length=170, overlap=10): | |
# Create an empty list to store the resized documents | |
resized = [] | |
# Iterate through the original documents list | |
for doc in documents: | |
encoded = tokenizer.encode(doc.page_content) | |
if len(encoded) > max_length: | |
remaining_encoded = tokenizer.encode(doc.page_content) | |
while len(remaining_encoded) > 0: | |
split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy()) | |
resized.append(split_doc) | |
remaining_encoded = remaining_encoded[max(10, max_length - overlap):] | |
else: | |
resized.append(doc) | |
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}") | |
return resized | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20): | |
# Create an empty list to store the resized documents | |
resized = [] | |
previous_file="" | |
# Iterate through the original documents list | |
for doc in documents: | |
current_file = doc.metadata['source'] | |
if current_file != previous_file: #chunk counting | |
previous_file = current_file | |
chunk_counter = 0 | |
is_first_chunk = True # Keep track of the first chunk in the document | |
encoded = tokenizer.encode(doc.page_content)#encode the current document | |
if len(encoded) > max_length: | |
remaining_encoded = encoded | |
is_last_chunk = False | |
while len(remaining_encoded) > 1 and not is_last_chunk: | |
# Check for a period in the first 'overlap' tokens | |
overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token | |
period_index_b = overlap_text.find('.')# Index by character | |
if len(remaining_encoded)>max_length + min_chunk_size: | |
current_encoded = remaining_encoded[:max(10, max_length)] | |
else: | |
current_encoded = remaining_encoded[:max(10, max_length + min_chunk_size)] #if the last chunk is to small, concatenate it with the previous one | |
is_last_chunk = True | |
period_index_e = len(doc.page_content) # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded)) | |
if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk | |
overlap_text_last = tokenizer.decode(current_encoded[-overlap:]) | |
period_index_last = overlap_text_last.find('.') | |
if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1: | |
#print(f"period index last found at {period_index_last}") | |
period_index_e = period_index_last - len(overlap_text_last) + 1 | |
#print(f"period_index_e :{period_index_e}") | |
#print(f"last :{overlap_text_last}") | |
if not is_first_chunk:#starting after the period in overlap | |
if period_index_b == -1:# Period not found in overlap | |
#print(". not found in overlap") | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # Keep regular splitting | |
else: | |
if is_last_chunk : #not the first but the last | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:], metadata=doc.metadata.copy()) | |
#print("Should start after \".\"") | |
else: | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e], metadata=doc.metadata.copy()) # Split at the begining and the end | |
else:#first chunk | |
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # split only at the end if its first chunk | |
if 'titles' in split_doc.metadata: | |
chunk_counter += 1 | |
split_doc.metadata['chunk_id'] = chunk_counter | |
#A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation | |
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content)) | |
resized.append(split_doc) | |
remaining_encoded = remaining_encoded[max(10, max_length - overlap):] | |
is_first_chunk = False | |
#print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content, "\n-----------------") | |
elif len(encoded)>min_chunk_size:#ignore the chunks that are too small | |
#print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶") | |
if 'titles' in doc.metadata:#check if it was splitted by or split_docx | |
chunk_counter += 1 | |
doc.metadata['chunk_id'] = chunk_counter | |
doc.metadata['token_length'] = len(encoded) | |
resized.append(doc) | |
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}") | |
return resized | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def split_doc_in_chunks(input_folder): | |
docs = [] | |
for i, filename in enumerate(input_folder): | |
path = filename#os.path.join(input_folder, filename) | |
print(f"Treating file {i}/{len(input_folder)}") | |
# Select the appropriate document loader | |
chunks=[] | |
if path.endswith(".pdf"): | |
try: | |
print("Treatment of pdf file", path) | |
raw_chuncks = split_pdf(path, input_folder) | |
chunks = group_chunks_by_section(raw_chuncks) | |
print(f"Document splitted in {len(chunks)} chunks") | |
# for chunk in chunks: | |
# print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n") | |
except Exception as e: | |
print("Error while splitting the pdf file: ", e) | |
elif path.endswith(".docx"): | |
try: | |
print ("Treatment of docx file", path) | |
raw_chuncks = split_docx(path, input_folder) | |
#print(f"RAW :\n***\n{raw_chuncks}") | |
chunks = group_chunks_by_section(raw_chuncks) | |
print(f"Document splitted in {len(chunks)} chunks") | |
#if "cards-Jan 2022-SP.docx" in path: | |
#for chunk in chunks: | |
#print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n") | |
except Exception as e: | |
print("Error while splitting the docx file: ", e) | |
elif path.endswith(".doc"): | |
try: | |
loader = UnstructuredFileLoader(path) | |
# Load the documents and split them in chunks | |
chunks = loader.load_and_split(text_splitter=text_splitter) | |
counter, counter2 = collections.Counter(), collections.Counter() | |
filename = os.path.basename(path) | |
# Define a unique id for each chunk | |
for chunk in chunks: | |
chunk.metadata["filename"] = filename.split("/")[-1] | |
chunk.metadata["file_directory"] = filename.split("/")[:-1] | |
chunk.metadata["filetype"] = filename.split(".")[-1] | |
if "page" in chunk.metadata: | |
counter[chunk.metadata['page']] += 1 | |
for i in range(len(chunks)): | |
counter2[chunks[i].metadata['page']] += 1 | |
chunks[i].metadata['source'] = filename | |
else: | |
if len(chunks) == 1: | |
chunks[0].metadata['source'] = filename | |
#The file type is not supported (e.g. .xlsx) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
try: | |
if len(chunks)>0: | |
docs += chunks | |
except NameError as e: | |
print(f"An error has occured: {e}") | |
return docs | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def resplit_by_end_of_sentence(docs): | |
print("❌❌\nResplitting docs by end of sentence\n❌❌") | |
resized_docs = split_chunks_by_tokens_period(docs, max_length=200, overlap=40, min_chunk_size=20) | |
try: | |
# add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter | |
cur_source = "" | |
cpt_chunk = 1 | |
for resized_doc in resized_docs: | |
try: | |
title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case | |
if title not in resized_doc.page_content: | |
resized_doc.page_content = title + "\n" + resized_doc.page_content | |
if cur_source == resized_doc.metadata["source"]: | |
resized_doc.metadata['chunk_number'] = cpt_chunk | |
else: | |
cpt_chunk = 1 | |
cur_source = resized_doc.metadata["source"] | |
resized_doc.metadata['chunk_number'] = cpt_chunk | |
except Exception as e:#either the title was notfound or title absent in metadata | |
print("An error occured: ", e) | |
#print(f"METADATA:\n{resized_doc.metadata}") | |
cpt_chunk += 1 | |
except Exception as e: | |
print('AN ERROR OCCURRED: ', e) | |
return resized_docs | |
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE | |
def build_index(docs, index, output_folder): | |
if len(docs) > 0: | |
if index is not None: | |
# Compute the embedding of each chunk and index these chunks | |
new_index = FAISS.from_documents(docs, embeddings) | |
index.merge_from(new_index) | |
else: | |
index = FAISS.from_documents(docs, embeddings) | |
with tempfile.TemporaryDirectory() as temp_dir: | |
index.save_local(temp_dir) | |
for f in os.listdir(temp_dir): | |
output_folder.upload_file(f, os.path.join(temp_dir, f)) | |
def split_in_df(files): | |
documents = split_doc_in_chunks(files) | |
df = pd.DataFrame() | |
for document in documents: | |
filename = document.metadata['filename'] | |
content = document.page_content | |
# metadata = document.metadata | |
# metadata_keys = list(metadata.keys()) | |
# metadata_values = list(metadata.values()) | |
doc_data = {'Filename': filename, 'Content': content} | |
# for key, value in zip(metadata_keys, metadata_values): | |
# doc_data[key] = value | |
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True) | |
df.to_excel("dataframe.xlsx", index=False) | |
return "dataframe.xlsx" |