Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
"""Deploy Barcelo demo.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1FxaL8DcYgvjPrWfWruSA5hvk3J81zLY9 | |
![ ](https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png) | |
# Modelo | |
YOLO es una familia de modelos de detección de objetos a escala compuesta entrenados en COCO dataset, e incluye una funcionalidad simple para Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. | |
## Gradio Inferencia | |
![](https://i.ibb.co/982NS6m/header.png) | |
Este Notebook se acelera opcionalmente con un entorno de ejecución de GPU | |
---------------------------------------------------------------------- | |
YOLOv5 Gradio demo | |
*Author: Ultralytics LLC and Gradio* | |
# Código | |
""" | |
#!pip install -qr https://raw.githubusercontent.com/ultralytics/yolov5/master/requirements.txt gradio # install dependencies | |
import os | |
import re | |
import json | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from ultralytics import YOLO | |
#from ultralyticsplus import render_result | |
# Images | |
torch.hub.download_url_to_file('https://i.pinimg.com/originals/7f/5e/96/7f5e9657c08aae4bcd8bc8b0dcff720e.jpg', 'ejemplo1.jpg') | |
torch.hub.download_url_to_file('https://i.pinimg.com/originals/c2/ce/e0/c2cee05624d5477ffcf2d34ca77b47d1.jpg', 'ejemplo2.jpg') | |
# Model | |
class YOLODetect(): | |
def __init__(self, modelo): | |
self.modelo = modelo | |
def predecir(self, url): | |
# conf float 0.25 umbral de confianza del objeto para la detección | |
# iou float 0.7 umbral de intersección sobre unión (IoU) para NMS | |
self.source = url | |
self.results = self.modelo.predict(source=self.source, imgsz=640, conf=0.5, iou=0.40) | |
return self.results | |
def show(self): | |
render = None #render_result(model=self.modelo, image=self.source, result=self.results[0]) | |
return render | |
def to_json(self): | |
results = self.results[0] | |
img_size = results.orig_shape | |
img_name = results.path | |
array_numpy = results.boxes.cls.cpu().numpy().astype(np.int32) | |
# Definir las clases y sus nombres correspondientes | |
clases = { | |
0: "Aedes", | |
1: "Mosquitos", | |
2: "Moscas" | |
} | |
# Contabilizar las clases | |
conteo_clases = np.bincount(array_numpy) | |
self.json_result = [{'Especie': clases[i], 'Cantidad': str(conteo_clases[i]) if i < len(conteo_clases) else str(0)} for i in range(len(clases))] | |
# Crear un diccionario con los elementos necesarios | |
result_dict = { | |
"image": str(img_name), | |
"size": str(img_size), | |
"detail": self.json_result | |
} | |
# Convertir el diccionario a una cadena JSON | |
result_dict = json.dumps(result_dict) | |
#print(f"{type(self.json_result)} - {self.json_result}") | |
# Convertir la cadena JSON a un objeto Python (diccionario) | |
result_dict = json.loads(result_dict) | |
#print(f"{type(self.json_result)} - {self.json_result}") | |
return result_dict | |
def to_dataframe(self): | |
return pd.DataFrame(self.json_result) | |
modelo_yolo = YOLO('best.pt') | |
def yolo(size, iou, conf, im): | |
'''Wrapper fn for gradio''' | |
g = (int(size) / max(im.size)) # gain | |
im = im.resize((int(x * g) for x in im.size), Image.LANCZOS) # resize with antialiasing | |
# model.iou = iou | |
# model.conf = conf | |
# results2 = model(im) # inference | |
# #print(type(results2)) | |
print(type(im)) | |
source = im#Image.open(im) | |
model = YOLODetect(modelo_yolo) | |
results = model.predecir(source) | |
result_json = model.to_json() | |
print(result_json) | |
result_df = model.to_dataframe() | |
print(result_df) | |
result_img = model.show() | |
#result_img, result_df, result_json = source, None, None | |
return result_img, result_df, result_json | |
#------------ Interface------------- | |
in1 = gr.inputs.Radio(['640', '1280'], label="Tamaño de la imagen", type='value') | |
in2 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, label='NMS IoU threshold') | |
in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, label='Umbral o threshold') | |
in4 = gr.inputs.Image(type='pil', label="Original Image") | |
out2 = gr.outputs.Image(type="pil", label="YOLOv5") | |
out3 = gr.outputs.Dataframe(label="Cantidad_especie", headers=['Cantidad','Especie'], type="pandas") | |
out4 = gr.outputs.JSON(label="JSON") | |
#-------------- Text----- | |
title = 'Trampas Barceló' | |
description = """ | |
<p> | |
<center> | |
Sistemas de Desarrollado por Subsecretaría de Modernización del Municipio de Vicente López. Advertencia solo usar fotos provenientes de las trampas Barceló, no de celular o foto de internet. | |
<img src="https://www.vicentelopez.gov.ar/assets/images/logo-mvl.png" alt="logo" width="250"/> | |
</center> | |
</p> | |
""" | |
article ="<p style='text-align: center'><a href='https://docs.google.com/presentation/d/1T5CdcLSzgRe8cQpoi_sPB4U170551NGOrZNykcJD0xU/edit?usp=sharing' target='_blank'>Para mas info, clik para ir al white paper</a></p><p style='text-align: center'><a href='https://drive.google.com/drive/folders/1owACN3HGIMo4zm2GQ_jf-OhGNeBVRS7l?usp=sharing ' target='_blank'>Google Colab Demo</a></p><p style='text-align: center'><a href='https://github.com/Municipalidad-de-Vicente-Lopez/Trampa_Barcelo' target='_blank'>Repo Github</a></p></center></p>" | |
examples = [['640',0.45, 0.75,'ejemplo1.jpg'], ['640',0.45, 0.75,'ejemplo2.jpg']] | |
iface = gr.Interface(yolo, | |
inputs=[in1, in2, in3, in4], | |
outputs=[out2,out3,out4], title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
analytics_enabled=False, | |
allow_flagging="manual", | |
flagging_options=["Correcto", "Incorrecto", "Casi correcto", "Error", "Otro"], | |
#flagging_callback=hf_writer | |
) | |
iface.launch(enable_queue=True, debug=True) | |
"""For YOLOv5 PyTorch Hub inference with **PIL**, **OpenCV**, **Numpy** or **PyTorch** inputs please see the full [YOLOv5 PyTorch Hub Tutorial](https://github.com/ultralytics/yolov5/issues/36). | |
## Citation | |
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686) | |
""" |