Spaces:
Runtime error
Runtime error
AlishbaImran
commited on
Commit
•
4f877e5
1
Parent(s):
38cd6f7
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from rdkit import Chem
|
|
15 |
from rdkit.Chem import AllChem
|
16 |
from sklearn.ensemble import RandomForestRegressor
|
17 |
|
18 |
-
|
19 |
import random
|
20 |
import numpy as np
|
21 |
from keras.wrappers.scikit_learn import KerasRegressor
|
@@ -30,11 +30,6 @@ from tensorflow.keras.models import Sequential
|
|
30 |
from tensorflow.keras.layers import Dense
|
31 |
from tensorflow.keras.layers import Dropout
|
32 |
|
33 |
-
#from keras.layers import Dense
|
34 |
-
#from keras.layers import Dropout
|
35 |
-
# Function to create model, required for KerasClassifier
|
36 |
-
|
37 |
-
|
38 |
def create_model(optimizer='RMSprop', learn_rate=0.1, momentum=0.4, activation='sigmoid', dropout_rate=0.0):
|
39 |
|
40 |
keras_model = Sequential()
|
@@ -51,28 +46,7 @@ def create_model(optimizer='RMSprop', learn_rate=0.1, momentum=0.4, activation='
|
|
51 |
|
52 |
return keras_model
|
53 |
|
54 |
-
|
55 |
-
######################
|
56 |
-
# Custom function
|
57 |
-
######################
|
58 |
-
## Calculate molecular descriptors
|
59 |
-
|
60 |
def get_ecfc(smiles_list, radius=2, nBits=2048, useCounts=True):
|
61 |
-
"""
|
62 |
-
Calculates the ECFP fingerprint for given SMILES list
|
63 |
-
|
64 |
-
:param smiles_list: List of SMILES
|
65 |
-
:type smiles_list: list
|
66 |
-
:param radius: The ECPF fingerprints radius.
|
67 |
-
:type radius: int
|
68 |
-
:param nBits: The number of bits of the fingerprint vector.
|
69 |
-
:type nBits: int
|
70 |
-
:param useCounts: Use count vector or bit vector.
|
71 |
-
:type useCounts: bool
|
72 |
-
:returns: The calculated ECPF fingerprints for the given SMILES
|
73 |
-
:rtype: Dataframe
|
74 |
-
"""
|
75 |
-
|
76 |
ecfp_fingerprints=[]
|
77 |
erroneous_smiles=[]
|
78 |
for smiles in smiles_list:
|
@@ -98,8 +72,6 @@ def get_ecfc(smiles_list, radius=2, nBits=2048, useCounts=True):
|
|
98 |
|
99 |
|
100 |
|
101 |
-
|
102 |
-
## generate dataset it is diffrent from origin one
|
103 |
import deepchem as dc
|
104 |
from deepchem.models import GraphConvModel
|
105 |
|
@@ -113,20 +85,13 @@ def generate(SMILES, verbose=False):
|
|
113 |
return dataset
|
114 |
|
115 |
|
116 |
-
######################
|
117 |
-
# Page Title
|
118 |
-
######################
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
st.write("""# Accelerated reaction energy prediction for redox batteries 🧪 """)
|
123 |
st.write('By: [Alishba Imran](https://www.linkedin.com/in/alishba-imran-/)')
|
124 |
|
125 |
|
126 |
|
127 |
|
128 |
-
|
129 |
-
# About PART
|
130 |
|
131 |
about_part = st.expander("Learn More About Project", expanded=False)
|
132 |
with about_part:
|
@@ -159,20 +124,12 @@ SMILES = list(filter(None, SMILES))
|
|
159 |
|
160 |
|
161 |
|
162 |
-
# st.header('Input SMILES')
|
163 |
-
# SMILES[1:] # Skips the dummy first item
|
164 |
-
|
165 |
# Use only top 1000
|
166 |
if len(SMILES)>1000:
|
167 |
SMILES=SMILES[0:1000]
|
168 |
|
169 |
-
## Calculate molecular descriptors
|
170 |
ecfc_encoder = get_ecfc(SMILES)
|
171 |
|
172 |
-
#Import pretrained models
|
173 |
-
|
174 |
-
#---------------------------------------------------------------------------------
|
175 |
-
### generate dataset from SMILES and function generate
|
176 |
generated_dataset = generate(SMILES)
|
177 |
|
178 |
### transformer for gcn
|
|
|
15 |
from rdkit.Chem import AllChem
|
16 |
from sklearn.ensemble import RandomForestRegressor
|
17 |
|
18 |
+
|
19 |
import random
|
20 |
import numpy as np
|
21 |
from keras.wrappers.scikit_learn import KerasRegressor
|
|
|
30 |
from tensorflow.keras.layers import Dense
|
31 |
from tensorflow.keras.layers import Dropout
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
def create_model(optimizer='RMSprop', learn_rate=0.1, momentum=0.4, activation='sigmoid', dropout_rate=0.0):
|
34 |
|
35 |
keras_model = Sequential()
|
|
|
46 |
|
47 |
return keras_model
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def get_ecfc(smiles_list, radius=2, nBits=2048, useCounts=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
ecfp_fingerprints=[]
|
51 |
erroneous_smiles=[]
|
52 |
for smiles in smiles_list:
|
|
|
72 |
|
73 |
|
74 |
|
|
|
|
|
75 |
import deepchem as dc
|
76 |
from deepchem.models import GraphConvModel
|
77 |
|
|
|
85 |
return dataset
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
st.write("""# Accelerated reaction energy prediction for redox batteries 🧪 """)
|
89 |
st.write('By: [Alishba Imran](https://www.linkedin.com/in/alishba-imran-/)')
|
90 |
|
91 |
|
92 |
|
93 |
|
94 |
+
|
|
|
95 |
|
96 |
about_part = st.expander("Learn More About Project", expanded=False)
|
97 |
with about_part:
|
|
|
124 |
|
125 |
|
126 |
|
|
|
|
|
|
|
127 |
# Use only top 1000
|
128 |
if len(SMILES)>1000:
|
129 |
SMILES=SMILES[0:1000]
|
130 |
|
|
|
131 |
ecfc_encoder = get_ecfc(SMILES)
|
132 |
|
|
|
|
|
|
|
|
|
133 |
generated_dataset = generate(SMILES)
|
134 |
|
135 |
### transformer for gcn
|