Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
# Define path the model | |
PATH_PROTOTXT = os.path.join('saved_model/MobileNetSSD_deploy.prototxt') | |
PATH_MODEL = os.path.join('saved_model/MobileNetSSD_deploy.caffemodel') | |
# Define clasess model | |
CLASSES = [ | |
'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', | |
'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'hourse', | |
'motorbike', 'person', 'porredplant', 'sheep', 'sofa', 'train', 'tvmonitor' | |
] | |
# Load model | |
NET = cv2.dnn.readNetFromCaffe(PATH_PROTOTXT, PATH_MODEL) | |
def person_counting(image, threshold=0.7): | |
''' | |
Counting the number of people in the image | |
Args: | |
image: image to be processed | |
threshold: threshold to filter out the objects | |
Returns: | |
image: image with rectangles people detected | |
counting: count of people | |
''' | |
counting = 0 | |
W, H = image.shape[1], image.shape[0] | |
blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5) | |
NET.setInput(blob); detections = NET.forward() | |
for i in np.arange(0, detections.shape[2]): | |
conf = detections[0, 0, i, 2] | |
idx = int(detections[0, 0, i, 1]) | |
if CLASSES[idx] == 'person' and conf > threshold: | |
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H]) | |
x_min, y_min, x_max, y_max = box.astype('int') | |
counting += 1 | |
cv2.rectangle(image, pt1=(x_min,y_min), pt2=(x_max,y_max), color=(255,0,0), thickness=1) | |
return image, counting | |
title = 'People counting' | |
css = ".image-preview {height: auto !important;}" | |
inputs = [gr.inputs.Image(source='upload'), gr.Slider(0, 1, value=0.5, label='threshold')] | |
outputs = [gr.outputs.Image(label='image output'), gr.Number(label='counting')] | |
examples = [[f'images/{i}', 0.5] for i in os.listdir('images')] | |
iface = gr.Interface( | |
title = title, | |
fn = person_counting, | |
inputs = inputs, | |
outputs = outputs, | |
examples= examples, | |
css=css | |
) | |
iface.launch() |