Lev McKinney commited on
Commit
02a3e82
Β·
1 Parent(s): 438fb10

reorginized lenses

Browse files
Files changed (24) hide show
  1. lens/{gpt-neox-20b β†’ EleutherAI/gpt-neox-20b}/config.json +0 -0
  2. lens/{gpt-neox-20b β†’ EleutherAI/gpt-neox-20b}/params.pt +0 -0
  3. lens/{pythia-1.4b-deduped-v0 β†’ EleutherAI/pythia-1.4b-deduped-v0}/config.json +0 -0
  4. lens/{pythia-1.4b-deduped-v0 β†’ EleutherAI/pythia-1.4b-deduped-v0}/params.pt +0 -0
  5. lens/{pythia-12b-deduped-v0 β†’ EleutherAI/pythia-12b-deduped-v0}/config.json +0 -0
  6. lens/{pythia-12b-deduped-v0 β†’ EleutherAI/pythia-12b-deduped-v0}/params.pt +0 -0
  7. lens/{pythia-160m-deduped-v0 β†’ EleutherAI/pythia-160m-deduped-v0}/config.json +0 -0
  8. lens/{pythia-160m-deduped-v0 β†’ EleutherAI/pythia-160m-deduped-v0}/params.pt +0 -0
  9. lens/{pythia-1b-deduped-v0 β†’ EleutherAI/pythia-1b-deduped-v0}/config.json +0 -0
  10. lens/{pythia-1b-deduped-v0 β†’ EleutherAI/pythia-1b-deduped-v0}/params.pt +0 -0
  11. lens/{pythia-410m-deduped-v0 β†’ EleutherAI/pythia-410m-deduped-v0}/config.json +0 -0
  12. lens/{pythia-410m-deduped-v0 β†’ EleutherAI/pythia-410m-deduped-v0}/params.pt +0 -0
  13. lens/{pythia-6.9b-deduped-v0 β†’ EleutherAI/pythia-6.9b-deduped-v0}/config.json +0 -0
  14. lens/{pythia-6.9b-deduped-v0 β†’ EleutherAI/pythia-6.9b-deduped-v0}/params.pt +0 -0
  15. lens/{pythia-70m-deduped-v0 β†’ EleutherAI/pythia-70m-deduped-v0}/config.json +0 -0
  16. lens/{pythia-70m-deduped-v0 β†’ EleutherAI/pythia-70m-deduped-v0}/params.pt +0 -0
  17. lens/{opt-1.3b β†’ facebook/opt-1.3b}/config.json +0 -0
  18. lens/{opt-1.3b β†’ facebook/opt-1.3b}/params.pt +0 -0
  19. lens/{opt-125m β†’ facebook/opt-125m}/config.json +0 -0
  20. lens/{opt-125m β†’ facebook/opt-125m}/params.pt +0 -0
  21. lens/{opt-6.7b β†’ facebook/opt-6.7b}/config.json +0 -0
  22. lens/{opt-6.7b β†’ facebook/opt-6.7b}/params.pt +0 -0
  23. lens_migration.py +0 -384
  24. migrate.sh +0 -12
lens/{gpt-neox-20b β†’ EleutherAI/gpt-neox-20b}/config.json RENAMED
File without changes
lens/{gpt-neox-20b β†’ EleutherAI/gpt-neox-20b}/params.pt RENAMED
File without changes
lens/{pythia-1.4b-deduped-v0 β†’ EleutherAI/pythia-1.4b-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-1.4b-deduped-v0 β†’ EleutherAI/pythia-1.4b-deduped-v0}/params.pt RENAMED
File without changes
lens/{pythia-12b-deduped-v0 β†’ EleutherAI/pythia-12b-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-12b-deduped-v0 β†’ EleutherAI/pythia-12b-deduped-v0}/params.pt RENAMED
File without changes
lens/{pythia-160m-deduped-v0 β†’ EleutherAI/pythia-160m-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-160m-deduped-v0 β†’ EleutherAI/pythia-160m-deduped-v0}/params.pt RENAMED
File without changes
lens/{pythia-1b-deduped-v0 β†’ EleutherAI/pythia-1b-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-1b-deduped-v0 β†’ EleutherAI/pythia-1b-deduped-v0}/params.pt RENAMED
File without changes
lens/{pythia-410m-deduped-v0 β†’ EleutherAI/pythia-410m-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-410m-deduped-v0 β†’ EleutherAI/pythia-410m-deduped-v0}/params.pt RENAMED
File without changes
lens/{pythia-6.9b-deduped-v0 β†’ EleutherAI/pythia-6.9b-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-6.9b-deduped-v0 β†’ EleutherAI/pythia-6.9b-deduped-v0}/params.pt RENAMED
File without changes
lens/{pythia-70m-deduped-v0 β†’ EleutherAI/pythia-70m-deduped-v0}/config.json RENAMED
File without changes
lens/{pythia-70m-deduped-v0 β†’ EleutherAI/pythia-70m-deduped-v0}/params.pt RENAMED
File without changes
lens/{opt-1.3b β†’ facebook/opt-1.3b}/config.json RENAMED
File without changes
lens/{opt-1.3b β†’ facebook/opt-1.3b}/params.pt RENAMED
File without changes
lens/{opt-125m β†’ facebook/opt-125m}/config.json RENAMED
File without changes
lens/{opt-125m β†’ facebook/opt-125m}/params.pt RENAMED
File without changes
lens/{opt-6.7b β†’ facebook/opt-6.7b}/config.json RENAMED
File without changes
lens/{opt-6.7b β†’ facebook/opt-6.7b}/params.pt RENAMED
File without changes
lens_migration.py DELETED
@@ -1,384 +0,0 @@
1
- #!/usr/bin/env python3
2
- from huggingface_hub import model_info
3
- import argparse
4
- from copy import deepcopy
5
- import inspect
6
- from logging import warn
7
- from pathlib import Path
8
- from tqdm import tqdm
9
- import json
10
-
11
- from tuned_lens.model_surgery import get_final_norm, get_transformer_layers
12
- from tuned_lens.load_artifacts import load_lens_artifacts
13
- from tuned_lens.nn import TunedLens
14
- from transformers.models.bloom.modeling_bloom import BloomBlock
15
- from transformers import PreTrainedModel, AutoModelForCausalLM
16
- from typing import Optional, Generator, Union
17
- import torch as th
18
-
19
- from tuned_lens.stats.distance import js_divergence
20
-
21
-
22
- def instantiate_layer(model_config, layer_idx: int, model_type: str) -> th.nn.Module:
23
- if model_type == "bloom":
24
- from transformers.models.bloom.modeling_bloom import BloomBlock
25
-
26
- return _BloomBlockWrapper(BloomBlock(model_config)) # type: ignore[arg-type]
27
- if model_type == "gpt_neo":
28
- from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoBlock
29
-
30
- return GPTNeoBlock(model_config, layer_idx)
31
- if model_type == "gpt_neox":
32
- from transformers.models.gpt_neox.modeling_gpt_neox import (
33
- GPTNeoXLayer,
34
- )
35
-
36
- return GPTNeoXLayer(model_config) # type: ignore[arg-type]
37
- if model_type == "gpt2":
38
- from transformers.models.gpt2.modeling_gpt2 import GPT2Block
39
-
40
- return GPT2Block(model_config, layer_idx) # type: ignore[arg-type]
41
- if model_type == "opt":
42
- from transformers.models.opt.modeling_opt import OPTDecoderLayer
43
-
44
- return OPTDecoderLayer(model_config) # type: ignore[arg-type]
45
- else:
46
- raise ValueError(f"Unknown model type '{model_type}'")
47
-
48
-
49
- def maybe_wrap(layer: th.nn.Module) -> th.nn.Module:
50
- return _BloomBlockWrapper(layer) if isinstance(layer, BloomBlock) else layer
51
-
52
-
53
- # Very annoying that we have to do this. See https://bit.ly/3XSQ7W6 for context on
54
- # what we're doing here.
55
- class _BloomBlockWrapper(th.nn.Module):
56
- def __init__(self, block: BloomBlock):
57
- super().__init__()
58
- self.block = block
59
-
60
- def forward(self, x: th.Tensor) -> th.Tensor:
61
- from transformers.models.bloom.modeling_bloom import (
62
- BloomModel,
63
- build_alibi_tensor,
64
- )
65
-
66
- batch_size, seq_len, _ = x.shape
67
- dummy_mask = x.new_ones([batch_size, seq_len])
68
-
69
- # Causal mask isn't created inside the block itself, so we have to do it here.
70
- # Weirdly _prepare_attn_mask doesn't depend on `self` at all but is still an
71
- # instance method for some reason, so we pass `None` as the first argument.
72
- causal_mask = BloomModel._prepare_attn_mask(
73
- None, dummy_mask, (batch_size, seq_len), 0 # type: ignore[arg-type]
74
- )
75
- alibi = build_alibi_tensor(dummy_mask, self.block.num_heads, x.dtype)
76
- h, *_ = self.block(x, alibi, causal_mask)
77
- return h
78
-
79
-
80
- class TunedLensOld(th.nn.Module):
81
- """A tuned lens for decoding hidden states into logits."""
82
-
83
- layer_norm: th.nn.LayerNorm
84
- unembedding: th.nn.Linear
85
- extra_layers: th.nn.Sequential
86
- layer_translators: th.nn.ModuleList
87
-
88
- def __init__(
89
- self,
90
- model: Optional[PreTrainedModel] = None,
91
- *,
92
- bias: bool = True,
93
- extra_layers: int = 0,
94
- include_input: bool = True,
95
- reuse_unembedding: bool = True,
96
- # Used when saving and loading the lens
97
- model_config: Optional[dict] = None,
98
- d_model: Optional[int] = None,
99
- num_layers: Optional[int] = None,
100
- vocab_size: Optional[int] = None,
101
- ):
102
- """Create a TunedLensOld.
103
-
104
- Args:
105
- model : A pertained model from the transformers library you wish to inspect.
106
- bias : Whether to include a bias term in the translator layers.
107
- extra_layers : The number of extra layers to apply to the hidden states
108
- before decoding into logits.
109
-
110
- include_input : Whether to include a lens that decodes the word embeddings.
111
- reuse_unembedding : Weather to reuse the unembedding matrix from the model.
112
- model_config : The config of the model. Used for saving and loading.
113
- d_model : The models hidden size. Used for saving and loading.
114
- num_layers : The number of layers in the model. Used for saving and loading.
115
- vocab_size : The size of the vocabulary. Used for saving and loading.
116
-
117
- Raises:
118
- ValueError: if neither a model or d_model, num_layers, and vocab_size,
119
- are provided.
120
- """
121
- super().__init__()
122
-
123
- self.extra_layers = th.nn.Sequential()
124
-
125
- if (
126
- model
127
- is None
128
- == (d_model is None or num_layers is None or vocab_size is None)
129
- ):
130
- raise ValueError(
131
- "Must provide either a model or d_model, num_layers, and vocab_size"
132
- )
133
-
134
- # Initializing from scratch without a model
135
- if not model:
136
- assert d_model and num_layers and vocab_size
137
- self.layer_norm = th.nn.LayerNorm(d_model)
138
- self.unembedding = th.nn.Linear(d_model, vocab_size, bias=False)
139
-
140
- # Use HuggingFace methods to get decoder layers
141
- else:
142
- assert not (d_model or num_layers or vocab_size)
143
- d_model = model.config.hidden_size
144
- num_layers = model.config.num_hidden_layers
145
- vocab_size = model.config.vocab_size
146
- assert isinstance(d_model, int) and isinstance(vocab_size, int)
147
-
148
- model_config = model.config.to_dict() # type: ignore[F841]
149
-
150
- # Currently we convert the decoder to full precision
151
- self.unembedding = deepcopy(model.get_output_embeddings()).float()
152
- if ln := get_final_norm(model):
153
- self.layer_norm = deepcopy(ln).float()
154
- else:
155
- self.layer_norm = th.nn.Identity()
156
-
157
- if extra_layers:
158
- _, layers = get_transformer_layers(model)
159
- self.extra_layers.extend(
160
- [maybe_wrap(layer) for layer in layers[-extra_layers:]]
161
- )
162
-
163
- # Save config for later
164
- config_keys = set(inspect.getfullargspec(TunedLensOld).kwonlyargs)
165
- self.config = {k: v for k, v in locals().items() if k in config_keys}
166
- del model_config
167
-
168
- # Try to prevent finetuning the decoder
169
- assert d_model and num_layers
170
- self.layer_norm.requires_grad_(False)
171
- self.unembedding.requires_grad_(False)
172
-
173
- out_features = d_model if reuse_unembedding else vocab_size
174
- translator = th.nn.Linear(d_model, out_features, bias=bias)
175
- if not reuse_unembedding:
176
- translator.weight.data = self.unembedding.weight.data.clone()
177
- translator.bias.data.zero_()
178
- else:
179
- translator.weight.data.zero_()
180
- translator.bias.data.zero_()
181
-
182
- self.add_module("input_translator", translator if include_input else None)
183
- # Don't include the final layer
184
- num_layers -= 1
185
-
186
- self.layer_translators = th.nn.ModuleList(
187
- [deepcopy(translator) for _ in range(num_layers)]
188
- )
189
-
190
- def __getitem__(self, item: int) -> th.nn.Module:
191
- """Get the probe module at the given index."""
192
- if isinstance(self.input_translator, th.nn.Module):
193
- if item == 0:
194
- return self.input_translator
195
- else:
196
- item -= 1
197
-
198
- return self.layer_translators[item]
199
-
200
- def __iter__(self) -> Generator[th.nn.Module, None, None]:
201
- """Get iterator over the translators within the lens."""
202
- if isinstance(self.input_translator, th.nn.Module):
203
- yield self.input_translator
204
-
205
- yield from self.layer_translators
206
-
207
- @classmethod
208
- def load(cls, resource_id: str, **kwargs) -> "TunedLensOld":
209
- """Load a tuned lens from a or hugging face hub.
210
-
211
- Args:
212
- resource_id : The path to the directory containing the config and checkpoint
213
- or the name of the model on the hugging face hub.
214
- **kwargs : Additional arguments to pass to torch.load.
215
-
216
- Returns:
217
- A TunedLensOld instance.
218
- """
219
- config_path, ckpt_path = load_lens_artifacts(resource_id)
220
- # Load config
221
- with open(config_path, "r") as f:
222
- config = json.load(f)
223
-
224
- # Load parameters
225
- state = th.load(ckpt_path, **kwargs)
226
-
227
- # Backwards compatibility we really need to stop renaming things
228
- keys = list(state.keys())
229
- for key in keys:
230
- for old_key in ["probe", "adapter"]:
231
- if old_key in key:
232
- warn(
233
- f"Loading a checkpoint with a '{old_key}' key. "
234
- "This is deprecated and may be removed in a future version. "
235
- )
236
- new_key = key.replace(old_key, "translator")
237
- state[new_key] = state.pop(key)
238
-
239
- # Drop unrecognized config keys
240
- unrecognized = set(config) - set(inspect.getfullargspec(cls).kwonlyargs)
241
- for key in unrecognized:
242
- warn(f"Ignoring config key '{key}'")
243
- del config[key]
244
-
245
- lens = cls(**config)
246
-
247
- if num_extras := config.get("extra_layers"):
248
- # This is sort of a hack but AutoConfig doesn't appear to have a from_dict
249
- # for some reason.
250
- from transformers.models.auto import CONFIG_MAPPING
251
-
252
- model_conf_dict = config.get("model_config")
253
- del model_conf_dict["torch_dtype"]
254
- assert model_conf_dict, "Need a 'model_config' entry to load extra layers"
255
-
256
- model_type = model_conf_dict["model_type"]
257
- config_cls = CONFIG_MAPPING[model_type]
258
- model_config = config_cls.from_dict(model_conf_dict)
259
-
260
- lens.extra_layers = th.nn.Sequential(
261
- *[
262
- instantiate_layer(
263
- model_config, model_config.num_hidden_layers - i - 1, model_type
264
- )
265
- for i in range(num_extras)
266
- ]
267
- )
268
-
269
- lens.load_state_dict(state)
270
- return lens
271
-
272
- def save(
273
- self,
274
- path: Union[Path, str],
275
- ckpt: str = "params.pt",
276
- config: str = "config.json",
277
- ) -> None:
278
- """Save the lens to a directory.
279
-
280
- Args:
281
- path : The path to the directory to save the lens to.
282
- ckpt : The name of the checkpoint file to save the parameters to.
283
- config : The name of the config file to save the config to.
284
- """
285
- path = Path(path)
286
- path.mkdir(exist_ok=True, parents=True)
287
- th.save(self.state_dict(), path / ckpt)
288
-
289
- with open(path / config, "w") as f:
290
- json.dump(self.config, f)
291
-
292
- def normalize_(self):
293
- """Canonicalize the transforms by centering their weights and biases."""
294
- for linear in self:
295
- assert isinstance(linear, th.nn.Linear)
296
-
297
- A, b = linear.weight.data, linear.bias.data
298
- A -= A.mean(dim=0, keepdim=True)
299
- b -= b.mean()
300
-
301
- def transform_hidden(self, h: th.Tensor, idx: int) -> th.Tensor:
302
- """Transform hidden state from layer `idx`."""
303
- if not self.config["reuse_unembedding"]:
304
- raise RuntimeError("TunedLensOld.transform_hidden requires reuse_unembedding")
305
-
306
- # Note that we add the translator output residually, in contrast to the formula
307
- # in the paper. By parametrizing it this way we ensure that weight decay
308
- # regularizes the transform toward the identity, not the zero transformation.
309
- return h + self[idx](h)
310
-
311
- def to_logits(self, h: th.Tensor) -> th.Tensor:
312
- """Decode a hidden state into logits."""
313
- h = self.extra_layers(h)
314
- while isinstance(h, tuple):
315
- h, *_ = h
316
-
317
- return self.unembedding(self.layer_norm(h))
318
-
319
- def forward(self, h: th.Tensor, idx: int) -> th.Tensor:
320
- """Transform and then decode the hidden states into logits."""
321
- # Sanity check to make sure we don't finetune the decoder
322
- # if any(p.requires_grad for p in self.parameters(recurse=False)):
323
- # raise RuntimeError("Make sure to freeze the decoder")
324
-
325
- # We're learning a separate unembedding for each layer
326
- if not self.config["reuse_unembedding"]:
327
- h_ = self.layer_norm(h)
328
- return self[idx](h_)
329
-
330
- h = self.transform_hidden(h, idx)
331
- return self.to_logits(h)
332
-
333
- def __len__(self) -> int:
334
- """Return the number of layer translators in the lens."""
335
- N = len(self.layer_translators)
336
- if self.input_translator:
337
- N += 1
338
-
339
- return N
340
-
341
-
342
- if __name__ == "__main__":
343
- parser = argparse.ArgumentParser()
344
- parser.add_argument("--model", type=str, default="gpt2")
345
- parser.add_argument("--resource-id", type=str, default="gpt2")
346
- parser.add_argument("--output-dir", type=str, default="lens/gpt2")
347
- args = parser.parse_args()
348
-
349
- model = AutoModelForCausalLM.from_pretrained(args.model)
350
- revision = model_info(args.model).sha
351
- model.eval()
352
- model.requires_grad_(False)
353
-
354
- device = th.device("cuda:0" if th.cuda.is_available() else "cpu")
355
-
356
- print("Loading old lens")
357
- tuned_lens_old = TunedLensOld.load(args.resource_id, map_location=device)
358
-
359
- print("Initializing new lens")
360
- tuned_lens = TunedLens.from_model(
361
- model, bias=tuned_lens_old.config['bias'], revision=revision
362
- )
363
-
364
- for i in tqdm(range(len(tuned_lens_old)), desc="Copying parameters"):
365
- tuned_lens[i].load_state_dict(tuned_lens_old[i].state_dict())
366
-
367
-
368
- tuned_lens = tuned_lens.to(device)
369
- tuned_lens_old = tuned_lens_old.to(device)
370
- model = model.to(device)
371
-
372
- # Fuzz the new lens against the old one's
373
- with th.no_grad():
374
- for i in tqdm(range(len(tuned_lens)), desc="Fuzzing layers"):
375
- for _ in range(10):
376
- a = th.randn(1, 1, tuned_lens.config.d_model, device=device)
377
- logits_new = tuned_lens(a, i)
378
- logits_old = tuned_lens_old(a, i)
379
- log_ps_new = logits_new.log_softmax(-1)
380
- log_ps_old = logits_old.log_softmax(-1)
381
- print("js div", js_divergence(log_ps_new, log_ps_old))
382
- assert (th.allclose(log_ps_new, log_ps_old, atol=1e-4)), (log_ps_new - log_ps_old).abs().max()
383
- print("Saving new lens to", args.output_dir)
384
- tuned_lens.to(th.device("cpu")).save(args.output_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
migrate.sh DELETED
@@ -1,12 +0,0 @@
1
- #!/bin/bash
2
-
3
- set -e
4
-
5
- for i in pythia-70m-deduped-v0,EleutherAI/pythia-70m-deduped-v0
6
- do
7
- IFS=","
8
- set -- $i
9
- echo "migrating $2"
10
- CUDA_VISIBLE_DEVICES=-1 python3 lens_migration.py --model $2 --resource-id $1 --output lens/$1
11
- git commit -am "$1 migrated"
12
- done