Alifarsi commited on
Commit
bba5c68
1 Parent(s): d28d703

Modified app.py

Browse files
Files changed (2) hide show
  1. app.py +38 -9
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,15 +1,44 @@
1
- import gradio as gr
2
- from transformers import pipeline
3
  import gradio as gr
4
  from gradio.mix import Parallel, Series
5
 
6
- io1 = gr.Interface.load('huggingface/sshleifer/distilbart-cnn-12-6')
7
- io2 = gr.Interface.load("huggingface/facebook/bart-large-cnn")
8
- io3 = gr.Interface.load("huggingface/google/pegasus-xsum")
9
- io4 = gr.Interface.load("huggingface/sshleifer/distilbart-cnn-6-6")
10
 
11
- iface = Parallel(io1, io2, io3, io4,
12
- theme='huggingface',
13
- inputs = gr.inputs.Textbox(lines = 10, label="Text"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  iface.launch()
 
1
+ from newspaper import Article
2
+ from newspaper import Config
3
  import gradio as gr
4
  from gradio.mix import Parallel, Series
5
 
 
 
 
 
6
 
7
+
8
+ def extract_article_text(url):
9
+ USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:78.0) Gecko/20100101 Firefox/78.0'
10
+ config = Config()
11
+ config.browser_user_agent = USER_AGENT
12
+ config.request_timeout = 10
13
+
14
+ article = Article(url, config=config)
15
+ article.download()
16
+ article.parse()
17
+ text = article.text
18
+ return text
19
+
20
+ extractor = gr.Interface(extract_article_text, 'text', 'text')
21
+ summarizer = gr.Interface.load("huggingface/facebook/bart-large-cnn")
22
+
23
+ sample_url = [['https://www.technologyreview.com/2021/07/22/1029973/deepmind-alphafold-protein-folding-biology-disease-drugs-proteome/'],
24
+ ['https://www.technologyreview.com/2021/07/21/1029860/disability-rights-employment-discrimination-ai-hiring/'],
25
+ ['https://www.technologyreview.com/2021/07/09/1028140/ai-voice-actors-sound-human/']]
26
+
27
+ desc = '''
28
+ Let Hugging Face models summarize articles for you.
29
+ Note: Shorter articles generate faster summaries.
30
+ This summarizer uses bart-large-cnn model by Facebook
31
+ '''
32
+
33
+ iface = Series(extractor, summarizer,
34
+ inputs = gr.inputs.Textbox(
35
+ lines = 2,
36
+ label = 'URL'
37
+ ),
38
+ outputs = 'text',
39
+ title = 'News Summarizer',
40
+ theme = 'huggingface',
41
+ description = desc,
42
+ examples=sample_url)
43
 
44
  iface.launch()
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- transformers
 
 
1
+ transformers
2
+ newspaper3k