pixera / app.py
Alican's picture
Update app.py
c9ce6ee
raw
history blame
2.94 kB
import os
import cv2
import torch
import random
import numpy as np
import gradio as gr
from util import util
from util.img2pixl import pixL
from data import create_dataset
from models import create_model
from options.test_options import TestOptions
opt = TestOptions().parse()
opt.num_threads = 0
opt.batch_size = 1
opt.display_id = -1
opt.no_dropout = True
model = create_model(opt)
model.setup(opt)
num_inferences = 0
def preprocess(image):
im_type = None
imgH, imgW = image.shape[:2]
aspect_ratio = imgW / imgH
if 0.75 <= aspect_ratio <= 1.75:
image = cv2.resize(image, (512, 512))
image = pixL().toThePixL([image],6)
image = image[0]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = np.asarray([image])
image = np.transpose(image, (0, 3, 1, 2))
image = inference(image)
return image
elif 1.75 <= aspect_ratio: # upper boundary
image = cv2.resize(image, (1024, 512))
middlePoint = image.shape[1] // 2
half_1 = image[:,:middlePoint]
half_2 = image[:,middlePoint:]
images = pixL().toThePixL([half_1,half_2],6)
for image in images:
image = np.asarray([image])
image = np.transpose(image, (0, 3, 1, 2))
image = inference(image)
image = cv2.hconcat([images[0], images[1]])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
elif 0.00 <= aspect_ratio <= 0.75:
image = cv2.resize(image, (512, 1024))
middlePoint = image.shape[0] // 2
half_1 = image[:middlePoint,:]
half_2 = image[middlePoint:,:]
images = pixL().toThePixL([half_1,half_2], 6)
for image in images:
image = np.asarray([image])
image = np.transpose(image, (0, 3, 1, 2))
image = inference(image)
image = cv2.vconcat([images[0], images[1]])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
def postprocess(image):
image = util.tensor2im(image)
return image
def inference(image):
global model
data = {"A": None, "A_paths": None}
data['A'] = torch.FloatTensor(image)
model.set_input(data)
model.test()
image = model.get_current_visuals()['fake']
return image
def pixera_CYCLEGAN(image):
global num_inferences
image = preprocess(image)
image = postprocess(image)
num_inferences += 1
print(num_inferences)
return image
title_ = "Pixera: Create your own Pixel Art"
description_ = ""
examples_path = f"{os.getcwd()}/imgs"
examples_ = os.listdir(examples_path)
random.shuffle(examples_)
examples_ = [[f"{examples_path}/{example}"] for example in examples_]
demo = gr.Interface(pixera_CYCLEGAN, inputs = [gr.Image(show_label= False)],
outputs = [gr.Image(show_label= False)],
examples = examples_,
title = title_,
description= description_)
demo.launch(debug= True, share=True)