Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
from langchain_groq import ChatGroq
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
6 |
-
from langchain_core.prompts import ChatPromptTemplate
|
7 |
-
from langchain.chains import create_retrieval_chain
|
8 |
-
from langchain_community.vectorstores import FAISS
|
9 |
-
from langchain_community.document_loaders import PyPDFLoader
|
10 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import time
|
13 |
-
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
## load the GROQ And OpenAI API KEY
|
17 |
-
groq_api_key = os.getenv('GROQ_API_KEY')
|
18 |
-
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
|
19 |
-
|
20 |
-
st.title("Gemma Model Document Q&A")
|
21 |
-
|
22 |
-
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
|
23 |
-
|
24 |
-
prompt = ChatPromptTemplate.from_template(
|
25 |
-
"""
|
26 |
-
Answer the questions based on the provided context only.
|
27 |
-
Please provide the most accurate response based on the question.
|
28 |
-
<context>
|
29 |
-
{context}
|
30 |
-
<context>
|
31 |
-
Questions: {input}
|
32 |
-
"""
|
33 |
-
)
|
34 |
-
|
35 |
-
def vector_embedding(uploaded_files):
|
36 |
-
|
37 |
-
if "vectors" not in st.session_state:
|
38 |
-
|
39 |
-
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
40 |
-
|
41 |
-
# Load documents from the uploaded PDF files
|
42 |
-
documents = []
|
43 |
-
for uploaded_file in uploaded_files:
|
44 |
-
loader = PyPDFLoader(uploaded_file)
|
45 |
-
documents.extend(loader.load())
|
46 |
-
|
47 |
-
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
48 |
-
st.session_state.final_documents = st.session_state.text_splitter.split_documents(documents)
|
49 |
-
|
50 |
-
if st.session_state.final_documents:
|
51 |
-
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
52 |
-
st.write("Vector Store DB Is Ready")
|
53 |
-
else:
|
54 |
-
st.write("No documents were loaded or processed. Please check your files.")
|
55 |
-
|
56 |
-
prompt1 = st.text_input("Enter Your Question From Documents")
|
57 |
-
|
58 |
-
uploaded_files = st.file_uploader("Upload your PDF files", accept_multiple_files=True, type=["pdf"])
|
59 |
-
|
60 |
-
if st.button("Documents Embedding") and uploaded_files:
|
61 |
-
vector_embedding(uploaded_files)
|
62 |
-
|
63 |
-
if prompt1 and "vectors" in st.session_state:
|
64 |
-
document_chain = create_stuff_documents_chain(llm, prompt)
|
65 |
-
retriever = st.session_state.vectors.as_retriever()
|
66 |
-
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
67 |
-
start = time.process_time()
|
68 |
-
response = retrieval_chain.invoke({'input': prompt1})
|
69 |
-
st.write(f"Response time: {time.process_time() - start:.2f} seconds")
|
70 |
-
st.write(response['answer'])
|
71 |
-
|
72 |
-
# With a Streamlit expander
|
73 |
-
with st.expander("Document Similarity Search"):
|
74 |
-
# Find the relevant chunks
|
75 |
-
for i, doc in enumerate(response["context"]):
|
76 |
-
st.write(doc.page_content)
|
77 |
-
st.write("--------------------------------")
|
78 |
-
else:
|
79 |
-
st.write("Please upload your documents and click on 'Documents Embedding' first.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|