AliZain1 commited on
Commit
07b43fd
·
verified ·
1 Parent(s): 6c45410

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -38
app.py CHANGED
@@ -12,62 +12,60 @@ from dotenv import load_dotenv
12
  import os
13
  load_dotenv()
14
 
15
- # Load the GROQ and OpenAI API KEY
16
- groq_api_key = os.getenv('GROQ_API_KEY')
17
- os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
18
 
19
  st.title("Gemma Model Document Q&A")
20
 
21
- llm = ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192")
 
22
 
23
- prompt = ChatPromptTemplate.from_template(
24
  """
25
  Answer the questions based on the provided context only.
26
- Please provide the most accurate response based on the question.
27
  <context>
28
  {context}
29
  <context>
30
- Questions: {input}
 
31
  """
32
  )
33
 
34
- def vector_embedding(uploaded_files):
 
35
  if "vectors" not in st.session_state:
36
- st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
37
-
38
- # Save the uploaded files and load them
39
- with open("uploaded_files.zip", "wb") as f:
40
- f.write(uploaded_files.getbuffer())
41
-
42
- # Extract the uploaded files
43
- os.system("unzip -o uploaded_files.zip -d ./uploaded_data")
44
-
45
- st.session_state.loader = PyPDFDirectoryLoader("./uploaded_data") # Data Ingestion
46
- st.session_state.docs = st.session_state.loader.load() # Document Loading
47
- st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
48
- st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs) # Splitting
49
- st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector OpenAI embeddings
50
-
51
- uploaded_files = st.file_uploader("Upload Your PDF Files", accept_multiple_files=True, type=["pdf"])
52
 
53
- if st.button("Documents Embedding"):
54
- if uploaded_files:
55
- vector_embedding(uploaded_files[0])
56
- st.write("Vector Store DB Is Ready")
57
- else:
58
- st.write("Please upload PDF files.")
 
 
 
59
 
60
- prompt1 = st.text_input("Enter Your Question From Documents")
 
 
 
 
 
 
61
 
62
  import time
63
 
 
 
64
  if prompt1:
65
- document_chain = create_stuff_documents_chain(llm, prompt)
66
- retriever = st.session_state.vectors.as_retriever()
67
- retrieval_chain = create_retrieval_chain(retriever, document_chain)
68
- start = time.process_time()
69
- response = retrieval_chain.invoke({'input': prompt1})
70
- st.write(f"Response time: {time.process_time() - start} seconds")
71
  st.write(response['answer'])
72
 
73
  # With a streamlit expander
@@ -75,4 +73,4 @@ if prompt1:
75
  # Find the relevant chunks
76
  for i, doc in enumerate(response["context"]):
77
  st.write(doc.page_content)
78
- st.write("--------------------------------")
 
12
  import os
13
  load_dotenv()
14
 
15
+ ## load the GROQ And OpenAI API KEY
16
+ groq_api_key=os.getenv('GROQ_API_KEY')
17
+ os.environ["GOOGLE_API_KEY"]=os.getenv("GOOGLE_API_KEY")
18
 
19
  st.title("Gemma Model Document Q&A")
20
 
21
+ llm=ChatGroq(groq_api_key=groq_api_key,
22
+ model_name="Llama3-8b-8192")
23
 
24
+ prompt=ChatPromptTemplate.from_template(
25
  """
26
  Answer the questions based on the provided context only.
27
+ Please provide the most accurate response based on the question
28
  <context>
29
  {context}
30
  <context>
31
+ Questions:{input}
32
+
33
  """
34
  )
35
 
36
+ def vector_embedding():
37
+
38
  if "vectors" not in st.session_state:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ st.session_state.embeddings=GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
41
+ st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion
42
+ st.session_state.docs=st.session_state.loader.load() ## Document Loading
43
+ st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation
44
+ st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting
45
+ st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings
46
+
47
+
48
+
49
 
50
+
51
+ prompt1=st.text_input("Enter Your Question From Doduments")
52
+
53
+
54
+ if st.button("Documents Embedding"):
55
+ vector_embedding()
56
+ st.write("Vector Store DB Is Ready")
57
 
58
  import time
59
 
60
+
61
+
62
  if prompt1:
63
+ document_chain=create_stuff_documents_chain(llm,prompt)
64
+ retriever=st.session_state.vectors.as_retriever()
65
+ retrieval_chain=create_retrieval_chain(retriever,document_chain)
66
+ start=time.process_time()
67
+ response=retrieval_chain.invoke({'input':prompt1})
68
+ print("Response time :",time.process_time()-start)
69
  st.write(response['answer'])
70
 
71
  # With a streamlit expander
 
73
  # Find the relevant chunks
74
  for i, doc in enumerate(response["context"]):
75
  st.write(doc.page_content)
76
+ st.write("--------------------------------")