Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
main.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import string
|
3 |
+
import nltk
|
4 |
+
from fastapi import FastAPI, HTTPException
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from typing import Optional
|
7 |
+
from transformers import pipeline
|
8 |
+
from pyngrok import ngrok
|
9 |
+
import nest_asyncio
|
10 |
+
from fastapi.responses import RedirectResponse
|
11 |
+
|
12 |
+
# Download NLTK resources
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('wordnet')
|
15 |
+
|
16 |
+
# Initialize FastAPI app
|
17 |
+
app = FastAPI()
|
18 |
+
|
19 |
+
# Text preprocessing functions
|
20 |
+
def remove_urls(text):
|
21 |
+
return re.sub(r'http[s]?://\S+', '', text)
|
22 |
+
|
23 |
+
def remove_punctuation(text):
|
24 |
+
regular_punct = string.punctuation
|
25 |
+
return re.sub(r'['+regular_punct+']', '', text)
|
26 |
+
|
27 |
+
def lower_case(text):
|
28 |
+
return text.lower()
|
29 |
+
|
30 |
+
def lemmatize(text):
|
31 |
+
wordnet_lemmatizer = nltk.WordNetLemmatizer()
|
32 |
+
tokens = nltk.word_tokenize(text)
|
33 |
+
return ' '.join([wordnet_lemmatizer.lemmatize(w) for w in tokens])
|
34 |
+
|
35 |
+
# Model loading
|
36 |
+
lyx_pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
37 |
+
|
38 |
+
# Input data model
|
39 |
+
class TextInput(BaseModel):
|
40 |
+
text: str
|
41 |
+
|
42 |
+
# Welcome endpoint
|
43 |
+
@app.get('/')
|
44 |
+
async def welcome():
|
45 |
+
# Redirect to the Swagger UI page
|
46 |
+
return RedirectResponse(url="/docs")
|
47 |
+
|
48 |
+
# Sentiment analysis endpoint
|
49 |
+
@app.post('/analyze/')
|
50 |
+
async def Predict_Sentiment(text_input: TextInput):
|
51 |
+
text = text_input.text
|
52 |
+
|
53 |
+
# Text preprocessing
|
54 |
+
text = remove_urls(text)
|
55 |
+
text = remove_punctuation(text)
|
56 |
+
text = lower_case(text)
|
57 |
+
text = lemmatize(text)
|
58 |
+
|
59 |
+
# Perform sentiment analysis
|
60 |
+
try:
|
61 |
+
return lyx_pipe(text)
|
62 |
+
except Exception as e:
|
63 |
+
raise HTTPException(status_code=500, detail=str(e))
|
64 |
+
|
65 |
+
# Run the FastAPI app using Uvicorn
|
66 |
+
if __name__ == "__main__":
|
67 |
+
# Create ngrok tunnel
|
68 |
+
ngrok_tunnel = ngrok.connect(7860)
|
69 |
+
print('Public URL:', ngrok_tunnel.public_url)
|
70 |
+
|
71 |
+
# Allow nested asyncio calls
|
72 |
+
nest_asyncio.apply()
|
73 |
+
|
74 |
+
# Run the FastAPI app with Uvicorn
|
75 |
+
import uvicorn
|
76 |
+
uvicorn.run(app, port=7860)
|
test.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi.testclient import TestClient
|
2 |
+
from main import app
|
3 |
+
|
4 |
+
client = TestClient(app)
|
5 |
+
|
6 |
+
def test_positive_sentiment():
|
7 |
+
response = client.post("/predict", json={"text": "I love this product! It's amazing."})
|
8 |
+
assert response.status_code == 200
|
9 |
+
assert response.json() == {"sentiment": "joy"} # Positive sentiment corresponds to joy
|
10 |
+
|
11 |
+
def test_negative_sentiment():
|
12 |
+
response = client.post("/predict", json={"text": "This product is terrible. I regret buying it."})
|
13 |
+
assert response.status_code == 200
|
14 |
+
assert response.json() == {"sentiment": "anger"} # Negative sentiment corresponds to anger
|
15 |
+
|
16 |
+
def test_neutral_sentiment():
|
17 |
+
response = client.post("/predict", json={"text": "This product is okay. It meets my expectations."})
|
18 |
+
assert response.status_code == 200
|
19 |
+
assert response.json() == {"sentiment": "neutral"} # Neutral sentiment remains unchanged
|
20 |
+
|
21 |
+
def test_anger_sentiment():
|
22 |
+
response = client.post("/predict", json={"text": "This product makes me furious!"})
|
23 |
+
assert response.status_code == 200
|
24 |
+
assert response.json() == {"sentiment": "anger"} # Emotion of anger
|
25 |
+
|
26 |
+
def test_disgust_sentiment():
|
27 |
+
response = client.post("/predict", json={"text": "I find this product revolting."})
|
28 |
+
assert response.status_code == 200
|
29 |
+
assert response.json() == {"sentiment": "disgust"} # Emotion of disgust
|
30 |
+
|
31 |
+
def test_fear_sentiment():
|
32 |
+
response = client.post("/predict", json={"text": "This product scares me."})
|
33 |
+
assert response.status_code == 200
|
34 |
+
assert response.json() == {"sentiment": "fear"} # Emotion of fear
|
35 |
+
|
36 |
+
def test_sadness_sentiment():
|
37 |
+
response = client.post("/predict", json={"text": "This product makes me really sad."})
|
38 |
+
assert response.status_code == 200
|
39 |
+
assert response.json() == {"sentiment": "sadness"} # Emotion of sadness
|
40 |
+
|
41 |
+
def test_surprise_sentiment():
|
42 |
+
response = client.post("/predict", json={"text": "I'm amazed by this product!"})
|
43 |
+
assert response.status_code == 200
|
44 |
+
assert response.json() == {"sentiment": "surprise"} # Emotion of surprise
|