Spaces:
Running
Running
Create severitypredictor.py
Browse files- severitypredictor.py +39 -0
severitypredictor.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import XLNetTokenizer, XLNetForSequenceClassification
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Path to the saved model
|
6 |
+
model_path = '/content/drive/My Drive/XLNet_model_project_Core.pt' # Update with your model path
|
7 |
+
|
8 |
+
# Load the saved model
|
9 |
+
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
|
10 |
+
model = XLNetForSequenceClassification.from_pretrained('xlnet-base-cased', num_labels=2)
|
11 |
+
model.load_state_dict(torch.load(model_path))
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# Function for prediction
|
15 |
+
def xl_net_predict(text):
|
16 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=100)
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
logits = outputs.logits
|
20 |
+
probabilities = torch.softmax(logits, dim=1)
|
21 |
+
predicted_class = torch.argmax(probabilities).item()
|
22 |
+
return "Severe" if predicted_class == 1 else "Non-severe"
|
23 |
+
|
24 |
+
# Customizing the interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=xl_net_predict,
|
27 |
+
inputs=gr.Textbox(lines=2, label="Summary", placeholder="Enter text here..."),
|
28 |
+
outputs=gr.Textbox(label="Predicted Severity"),
|
29 |
+
title="XLNet Based Bug Report Severity Prediction",
|
30 |
+
description="Enter text and predict its severity (Severe or Non-severe).",
|
31 |
+
theme="huggingface",
|
32 |
+
examples=[
|
33 |
+
["Can't open multiple bookmarks at once from the bookmarks sidebar using the context menu"],
|
34 |
+
["Minor enhancements to make-source-package.sh"]
|
35 |
+
],
|
36 |
+
allow_flagging=False
|
37 |
+
)
|
38 |
+
|
39 |
+
iface.launch()
|