AliArshad's picture
Update app.py
545a4be
raw
history blame
1.43 kB
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import gradio as gr
# Path to the saved model in Hugging Face Spaces
model_path = 'https://huggingface.co/spaces/AliArshad/SeverityPrediction/blob/main/XLNet_model_project_Core.pt'
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('xlnet-base-cased')
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Function for prediction
def xl_net_predict(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=100)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=1)
predicted_class = torch.argmax(probabilities).item()
return "Severe" if predicted_class == 1 else "Non-severe"
# Customizing the interface
iface = gr.Interface(
fn=xl_net_predict,
inputs=gr.Textbox(lines=2, label="Summary", placeholder="Enter text here..."),
outputs=gr.Textbox(label="Predicted Severity"),
title="XLNet Based Bug Report Severity Prediction",
description="Enter text and predict its severity (Severe or Non-severe).",
theme="huggingface",
examples=[
["Can't open multiple bookmarks at once from the bookmarks sidebar using the context menu"],
["Minor enhancements to make-source-package.sh"]
],
allow_flagging=False
)
iface.launch()