Spaces:
Runtime error
Runtime error
AlhitawiMohammed22
commited on
Commit
•
ff135d3
1
Parent(s):
9002e70
Create Builder Script
Browse files- builder.py +305 -0
builder.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Copyright (C) 2021, Mindee.
|
3 |
+
|
4 |
+
# This program is licensed under the Apache License version 2.
|
5 |
+
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details.
|
6 |
+
|
7 |
+
|
8 |
+
from typing import Any, Dict, List, Tuple
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from scipy.cluster.hierarchy import fclusterdata
|
13 |
+
|
14 |
+
from doctr.utils.geometry import estimate_page_angle, resolve_enclosing_bbox, resolve_enclosing_rbbox, rotate_boxes
|
15 |
+
from doctr.utils.repr import NestedObject
|
16 |
+
|
17 |
+
__all__ = ['DocumentBuilder']
|
18 |
+
|
19 |
+
|
20 |
+
class DocumentBuilder(NestedObject):
|
21 |
+
"""Implements a document builder
|
22 |
+
Args:
|
23 |
+
resolve_lines: whether words should be automatically grouped into lines
|
24 |
+
resolve_blocks: whether lines should be automatically grouped into blocks
|
25 |
+
paragraph_break: relative length of the minimum space separating paragraphs
|
26 |
+
export_as_straight_boxes: if True, force straight boxes in the export (fit a rectangle
|
27 |
+
box to all rotated boxes). Else, keep the boxes format unchanged, no matter what it is.
|
28 |
+
"""
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
resolve_lines: bool = True,
|
33 |
+
resolve_blocks: bool = True,
|
34 |
+
paragraph_break: float = 0.035,
|
35 |
+
export_as_straight_boxes: bool = False,
|
36 |
+
) -> None:
|
37 |
+
|
38 |
+
self.resolve_lines = resolve_lines
|
39 |
+
self.resolve_blocks = resolve_blocks
|
40 |
+
self.paragraph_break = paragraph_break
|
41 |
+
self.export_as_straight_boxes = export_as_straight_boxes
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def _sort_boxes(boxes: np.ndarray) -> np.ndarray:
|
45 |
+
"""Sort bounding boxes from top to bottom, left to right
|
46 |
+
Args:
|
47 |
+
boxes: bounding boxes of shape (N, 4) or (N, 4, 2) (in case of rotated bbox)
|
48 |
+
Returns:
|
49 |
+
tuple: indices of ordered boxes of shape (N,), boxes
|
50 |
+
If straight boxes are passed tpo the function, boxes are unchanged
|
51 |
+
else: boxes returned are straight boxes fitted to the straightened rotated boxes
|
52 |
+
so that we fit the lines afterwards to the straigthened page
|
53 |
+
"""
|
54 |
+
if boxes.ndim == 3:
|
55 |
+
boxes = rotate_boxes(
|
56 |
+
loc_preds=boxes,
|
57 |
+
angle=-estimate_page_angle(boxes),
|
58 |
+
orig_shape=(1024, 1024),
|
59 |
+
min_angle=5.,
|
60 |
+
)
|
61 |
+
boxes = np.concatenate((boxes.min(1), boxes.max(1)), -1)
|
62 |
+
return (boxes[:, 0] + 2 * boxes[:, 3] / np.median(boxes[:, 3] - boxes[:, 1])).argsort(), boxes
|
63 |
+
|
64 |
+
def _resolve_sub_lines(self, boxes: np.ndarray, word_idcs: List[int]) -> List[List[int]]:
|
65 |
+
"""Split a line in sub_lines
|
66 |
+
Args:
|
67 |
+
boxes: bounding boxes of shape (N, 4)
|
68 |
+
word_idcs: list of indexes for the words of the line
|
69 |
+
Returns:
|
70 |
+
A list of (sub-)lines computed from the original line (words)
|
71 |
+
"""
|
72 |
+
lines = []
|
73 |
+
# Sort words horizontally
|
74 |
+
word_idcs = [word_idcs[idx]
|
75 |
+
for idx in boxes[word_idcs, 0].argsort().tolist()]
|
76 |
+
|
77 |
+
# Eventually split line horizontally
|
78 |
+
if len(word_idcs) < 2:
|
79 |
+
lines.append(word_idcs)
|
80 |
+
else:
|
81 |
+
sub_line = [word_idcs[0]]
|
82 |
+
for i in word_idcs[1:]:
|
83 |
+
horiz_break = True
|
84 |
+
|
85 |
+
prev_box = boxes[sub_line[-1]]
|
86 |
+
# Compute distance between boxes
|
87 |
+
dist = boxes[i, 0] - prev_box[2]
|
88 |
+
# If distance between boxes is lower than paragraph break, same sub-line
|
89 |
+
if dist < self.paragraph_break:
|
90 |
+
horiz_break = False
|
91 |
+
|
92 |
+
if horiz_break:
|
93 |
+
lines.append(sub_line)
|
94 |
+
sub_line = []
|
95 |
+
|
96 |
+
sub_line.append(i)
|
97 |
+
lines.append(sub_line)
|
98 |
+
|
99 |
+
return lines
|
100 |
+
|
101 |
+
def _resolve_lines(self, boxes: np.ndarray) -> List[List[int]]:
|
102 |
+
"""Order boxes to group them in lines
|
103 |
+
Args:
|
104 |
+
boxes: bounding boxes of shape (N, 4) or (N, 4, 2) in case of rotated bbox
|
105 |
+
Returns:
|
106 |
+
nested list of box indices
|
107 |
+
"""
|
108 |
+
|
109 |
+
# Sort boxes, and straighten the boxes if they are rotated
|
110 |
+
idxs, boxes = self._sort_boxes(boxes)
|
111 |
+
|
112 |
+
# Compute median for boxes heights
|
113 |
+
y_med = np.median(boxes[:, 3] - boxes[:, 1])
|
114 |
+
|
115 |
+
lines = []
|
116 |
+
words = [idxs[0]] # Assign the top-left word to the first line
|
117 |
+
# Define a mean y-center for the line
|
118 |
+
y_center_sum = boxes[idxs[0]][[1, 3]].mean()
|
119 |
+
|
120 |
+
for idx in idxs[1:]:
|
121 |
+
vert_break = True
|
122 |
+
|
123 |
+
# Compute y_dist
|
124 |
+
y_dist = abs(boxes[idx][[1, 3]].mean() - y_center_sum / len(words))
|
125 |
+
# If y-center of the box is close enough to mean y-center of the line, same line
|
126 |
+
if y_dist < y_med / 2:
|
127 |
+
vert_break = False
|
128 |
+
|
129 |
+
if vert_break:
|
130 |
+
# Compute sub-lines (horizontal split)
|
131 |
+
lines.extend(self._resolve_sub_lines(boxes, words))
|
132 |
+
words = []
|
133 |
+
y_center_sum = 0
|
134 |
+
|
135 |
+
words.append(idx)
|
136 |
+
y_center_sum += boxes[idx][[1, 3]].mean()
|
137 |
+
|
138 |
+
# Use the remaining words to form the last(s) line(s)
|
139 |
+
if len(words) > 0:
|
140 |
+
# Compute sub-lines (horizontal split)
|
141 |
+
lines.extend(self._resolve_sub_lines(boxes, words))
|
142 |
+
|
143 |
+
return lines
|
144 |
+
|
145 |
+
@staticmethod
|
146 |
+
def _resolve_blocks(boxes: np.ndarray, lines: List[List[int]]) -> List[List[List[int]]]:
|
147 |
+
"""Order lines to group them in blocks
|
148 |
+
Args:
|
149 |
+
boxes: bounding boxes of shape (N, 4) or (N, 4, 2)
|
150 |
+
lines: list of lines, each line is a list of idx
|
151 |
+
Returns:
|
152 |
+
nested list of box indices
|
153 |
+
"""
|
154 |
+
# Resolve enclosing boxes of lines
|
155 |
+
if boxes.ndim == 3:
|
156 |
+
box_lines = np.asarray([
|
157 |
+
resolve_enclosing_rbbox(
|
158 |
+
[tuple(boxes[idx, :, :]) for idx in line])
|
159 |
+
for line in lines # type: ignore[misc]
|
160 |
+
])
|
161 |
+
else:
|
162 |
+
_box_lines = [
|
163 |
+
resolve_enclosing_bbox([
|
164 |
+
# type: ignore[misc]
|
165 |
+
(tuple(boxes[idx, :2]), tuple(boxes[idx, 2:])) for idx in line
|
166 |
+
])
|
167 |
+
for line in lines
|
168 |
+
]
|
169 |
+
box_lines = np.asarray([(x1, y1, x2, y2)
|
170 |
+
for ((x1, y1), (x2, y2)) in _box_lines])
|
171 |
+
|
172 |
+
# Compute geometrical features of lines to clusterize
|
173 |
+
# Clusterizing only with box centers yield to poor results for complex documents
|
174 |
+
if boxes.ndim == 3:
|
175 |
+
box_features = np.stack(
|
176 |
+
(
|
177 |
+
(box_lines[:, 0, 0] + box_lines[:, 0, 1]) / 2,
|
178 |
+
(box_lines[:, 0, 0] + box_lines[:, 2, 0]) / 2,
|
179 |
+
(box_lines[:, 0, 0] + box_lines[:, 2, 1]) / 2,
|
180 |
+
(box_lines[:, 0, 1] + box_lines[:, 2, 1]) / 2,
|
181 |
+
(box_lines[:, 0, 1] + box_lines[:, 2, 0]) / 2,
|
182 |
+
(box_lines[:, 2, 0] + box_lines[:, 2, 1]) / 2,
|
183 |
+
), axis=-1
|
184 |
+
)
|
185 |
+
else:
|
186 |
+
box_features = np.stack(
|
187 |
+
(
|
188 |
+
(box_lines[:, 0] + box_lines[:, 3]) / 2,
|
189 |
+
(box_lines[:, 1] + box_lines[:, 2]) / 2,
|
190 |
+
(box_lines[:, 0] + box_lines[:, 2]) / 2,
|
191 |
+
(box_lines[:, 1] + box_lines[:, 3]) / 2,
|
192 |
+
box_lines[:, 0],
|
193 |
+
box_lines[:, 1],
|
194 |
+
), axis=-1
|
195 |
+
)
|
196 |
+
# Compute clusters
|
197 |
+
clusters = fclusterdata(
|
198 |
+
box_features, t=0.1, depth=4, criterion='distance', metric='euclidean')
|
199 |
+
|
200 |
+
_blocks: Dict[int, List[int]] = {}
|
201 |
+
# Form clusters
|
202 |
+
for line_idx, cluster_idx in enumerate(clusters):
|
203 |
+
if cluster_idx in _blocks.keys():
|
204 |
+
_blocks[cluster_idx].append(line_idx)
|
205 |
+
else:
|
206 |
+
_blocks[cluster_idx] = [line_idx]
|
207 |
+
|
208 |
+
# Retrieve word-box level to return a fully nested structure
|
209 |
+
blocks = [[lines[idx] for idx in block] for block in _blocks.values()]
|
210 |
+
|
211 |
+
return blocks
|
212 |
+
|
213 |
+
def _build_blocks(self, boxes: np.ndarray, word_preds: List[Tuple[str, float]], page_shapes: List[Tuple[int, int]]) -> Any:
|
214 |
+
"""Gather independent words in structured blocks
|
215 |
+
Args:
|
216 |
+
boxes: bounding boxes of all detected words of the page, of shape (N, 5) or (N, 4, 2)
|
217 |
+
word_preds: list of all detected words of the page, of shape N
|
218 |
+
Returns:
|
219 |
+
list of block elements
|
220 |
+
"""
|
221 |
+
|
222 |
+
if boxes.shape[0] != len(word_preds):
|
223 |
+
raise ValueError(
|
224 |
+
f"Incompatible argument lengths: {boxes.shape[0]}, {len(word_preds)}")
|
225 |
+
|
226 |
+
if boxes.shape[0] == 0:
|
227 |
+
return []
|
228 |
+
|
229 |
+
# Decide whether we try to form lines
|
230 |
+
_boxes = boxes
|
231 |
+
if self.resolve_lines:
|
232 |
+
lines = self._resolve_lines(
|
233 |
+
_boxes if _boxes.ndim == 3 else _boxes[:, :4])
|
234 |
+
# Decide whether we try to form blocks
|
235 |
+
if self.resolve_blocks and len(lines) > 1:
|
236 |
+
_blocks = self._resolve_blocks(
|
237 |
+
_boxes if _boxes.ndim == 3 else _boxes[:, :4], lines)
|
238 |
+
else:
|
239 |
+
_blocks = [lines]
|
240 |
+
else:
|
241 |
+
# Sort bounding boxes, one line for all boxes, one block for the line
|
242 |
+
lines = [self._sort_boxes(
|
243 |
+
_boxes if _boxes.ndim == 3 else _boxes[:, :4])[0]]
|
244 |
+
_blocks = [lines]
|
245 |
+
|
246 |
+
rows = []
|
247 |
+
for block_idx, lines in enumerate(_blocks):
|
248 |
+
for line_idx, line in enumerate(lines):
|
249 |
+
for i,idx in enumerate(line):
|
250 |
+
h, w = page_shapes
|
251 |
+
row = (
|
252 |
+
block_idx, line_idx, i, word_preds[idx],
|
253 |
+
int(round(boxes[idx, 0]*w)
|
254 |
+
), int(round(boxes[idx, 1]*h)),
|
255 |
+
int(round(boxes[idx, 2]*w)
|
256 |
+
), int(round(boxes[idx, 3]*h)),
|
257 |
+
int(round(boxes[idx, 4]*100))
|
258 |
+
)
|
259 |
+
rows.append(row)
|
260 |
+
|
261 |
+
return rows
|
262 |
+
|
263 |
+
def extra_repr(self) -> str:
|
264 |
+
return (f"resolve_lines={self.resolve_lines}, resolve_blocks={self.resolve_blocks}, "
|
265 |
+
f"paragraph_break={self.paragraph_break}, "
|
266 |
+
f"export_as_straight_boxes={self.export_as_straight_boxes}")
|
267 |
+
|
268 |
+
def __call__(
|
269 |
+
self,
|
270 |
+
boxes: List[np.ndarray],
|
271 |
+
text_preds: List[List[Tuple[str, float]]],
|
272 |
+
page_shapes: List[Tuple[int, int]]
|
273 |
+
) -> pd.DataFrame:
|
274 |
+
"""Re-arrange detected words into structured blocks
|
275 |
+
Args:
|
276 |
+
boxes: list of N elements, where each element represents the localization predictions, of shape (*, 5)
|
277 |
+
or (*, 6) for all words for a given page
|
278 |
+
text_preds: list of N elements, where each element is the list of all word prediction (text + confidence)
|
279 |
+
page_shape: shape of each page, of size N
|
280 |
+
Returns:
|
281 |
+
document object
|
282 |
+
"""
|
283 |
+
if len(boxes) != len(text_preds) or len(boxes) != len(page_shapes):
|
284 |
+
raise ValueError(
|
285 |
+
"All arguments are expected to be lists of the same size")
|
286 |
+
|
287 |
+
if self.export_as_straight_boxes and len(boxes) > 0:
|
288 |
+
# If boxes are already straight OK, else fit a bounding rect
|
289 |
+
if boxes[0].ndim == 3:
|
290 |
+
straight_boxes = []
|
291 |
+
# Iterate over pages
|
292 |
+
for p_boxes in boxes:
|
293 |
+
# Iterate over boxes of the pages
|
294 |
+
straight_boxes.append(np.concatenate(
|
295 |
+
(p_boxes.min(1), p_boxes.max(1)), 1))
|
296 |
+
boxes = straight_boxes
|
297 |
+
|
298 |
+
_pages = [
|
299 |
+
pd.DataFrame.from_records(self._build_blocks(page_boxes, word_preds, shape), columns=[
|
300 |
+
"block_num", "line_num", "word_num" ,"word", "xmin", "ymin", "xmax", "ymax", "confidence_score"
|
301 |
+
])
|
302 |
+
for _idx, shape, page_boxes, word_preds in zip(range(len(boxes)), page_shapes, boxes, text_preds)
|
303 |
+
]
|
304 |
+
|
305 |
+
return _pages
|