Spaces:
Runtime error
Runtime error
import logging | |
import time | |
from pathlib import Path | |
import contextlib | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
) | |
import gradio as gr | |
import nltk | |
import torch | |
from det_rec import * | |
_here = Path(__file__).parent | |
nltk.download("stopwords") # TODO=find where this requirement originates from | |
def load_uploaded_file(file_obj, temp_dir: Path = None): | |
""" | |
load_uploaded_file - process an uploaded file | |
Args: | |
file_obj (POTENTIALLY list): Gradio file object inside a list | |
Returns: | |
str, the uploaded file contents | |
""" | |
# check if mysterious file object is a list | |
if isinstance(file_obj, list): | |
file_obj = file_obj[0] | |
file_path = Path(file_obj.name) | |
if temp_dir is None: | |
_temp_dir = _here / "temp" | |
_temp_dir.mkdir(exist_ok=True) | |
try: | |
pdf_bytes_obj = open(file_path, "rb").read() | |
temp_path = temp_dir / file_path.name if temp_dir else file_path | |
# save to PDF file | |
with open(temp_path, "wb") as f: | |
f.write(pdf_bytes_obj) | |
logging.info(f"The uploaded file saved to {temp_path}") | |
return str(temp_path.resolve()) | |
except Exception as e: | |
logging.error(f"Trying to load file with path {file_path}, error: {e}") | |
print(f"Trying to load file with path {file_path}, error: {e}") | |
return None | |
def convert_PDF( | |
pdf_obj, | |
language: str = "en", | |
max_pages=20, | |
): | |
""" | |
convert_PDF - convert a PDF file to text | |
Args: | |
pdf_bytes_obj (bytes): PDF file contents | |
language (str, optional): Language to use for OCR. Defaults to "en". | |
Returns: | |
str, the PDF file contents as text | |
""" | |
# clear local text cache | |
rm_local_text_files() | |
global ocr_model | |
st = time.perf_counter() | |
if isinstance(pdf_obj, list): | |
pdf_obj = pdf_obj[0] | |
file_path = Path(pdf_obj.name) | |
if not file_path.suffix == ".pdf": | |
logging.error(f"File {file_path} is not a PDF file") | |
html_error = f""" | |
<div style="color: red; font-size: 20px; font-weight: bold;"> | |
File {file_path} is not a PDF file. Please upload a PDF file. | |
</div> | |
""" | |
return "File is not a PDF file", html_error, None | |
conversion_stats = convert_PDF_to_Text( | |
file_path, | |
ocr_model=ocr_model, | |
max_pages=max_pages, | |
) | |
converted_txt = conversion_stats["converted_text"] | |
num_pages = conversion_stats["num_pages"] | |
was_truncated = conversion_stats["truncated"] | |
# if alt_lang: # TODO: fix this | |
rt = round((time.perf_counter() - st) / 60, 2) | |
print(f"Runtime: {rt} minutes") | |
html = "" | |
if was_truncated: | |
html += f"<p>WARNING - PDF was truncated to {max_pages} pages</p>" | |
html += f"<p>Runtime: {rt} minutes on CPU for {num_pages} pages</p>" | |
_output_name = f"RESULT_{file_path.stem}_OCR.txt" | |
with open(_output_name, "w", encoding="utf-8", errors="ignore") as f: | |
f.write(converted_txt) | |
return converted_txt, html, _output_name | |
if __name__ == "__main__": | |
logging.info("Starting app") | |
use_GPU = torch.cuda.is_available() | |
logging.info(f"Using GPU status: {use_GPU}") | |
logging.info("Loading OCR model") | |
with contextlib.redirect_stdout(None): | |
ocr_model = ocr_predictor( | |
"db_resnet50", | |
"crnn_mobilenet_v3_large", | |
pretrained=True, | |
assume_straight_pages=True, | |
) | |
# define pdf bytes as None | |
pdf_obj = _here / "exampler.pdf" | |
pdf_obj = str(pdf_obj.resolve()) | |
_temp_dir = _here / "temp" | |
_temp_dir.mkdir(exist_ok=True) | |
logging.info("starting demo") | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# PDF to Text") | |
gr.Markdown( | |
"A basic demo for end-to-end text detection and recognition where the input will be in pdf format and the result is text conversion using OCR from the [doctr](https://mindee.github.io/doctr/index.html) package" | |
) | |
gr.Markdown("---") | |
gr.Markdown("---") | |
with gr.Column(): | |
gr.Markdown("## Load Inputs") | |
gr.Markdown("Upload your own file & replace the default. Files should be < 10MB to avoid upload issues - search for a PDF compressor online as needed.") | |
gr.Markdown( | |
"_If no file is uploaded, a sample PDF will be used. PDFs are truncated to 20 pages._" | |
) | |
uploaded_file = gr.File( | |
label="Upload a PDF file", | |
file_count="single", | |
type="file", | |
value=_here / "example_file.pdf", | |
) | |
gr.Markdown("---") | |
with gr.Column(): | |
gr.Markdown("## Convert PDF to Text") | |
convert_button = gr.Button("Convert PDF!", variant="primary") | |
out_placeholder = gr.HTML("<p><em>Output will appear below:</em></p>") | |
gr.Markdown("### Output") | |
OCR_text = gr.Textbox( | |
label="OCR Result", placeholder="The OCR text will appear here" | |
) | |
text_file = gr.File( | |
label="Download Text File", | |
file_count="single", | |
type="file", | |
interactive=False, | |
) | |
convert_button.click( | |
fn=convert_PDF, | |
inputs=[uploaded_file], | |
outputs=[OCR_text, out_placeholder, text_file], | |
) | |
demo.launch(enable_queue=True) |