Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -12,13 +12,10 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor =
|
16 |
|
17 |
-
model =
|
18 |
-
|
19 |
-
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
@@ -27,8 +24,10 @@ def translate(audio):
|
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor, VitsModel, VitsTokenizer
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="russian")
|
16 |
|
17 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
18 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
def translate(audio):
|
|
|
24 |
|
25 |
|
26 |
def synthesise(text):
|
27 |
+
inputs = processor(text=text, return_tensors="pt")["input_ids"]
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(inputs)
|
30 |
+
speech = outputs["waveform"]
|
31 |
return speech.cpu()
|
32 |
|
33 |
|