Alexndem commited on
Commit
45c8117
1 Parent(s): dbfdf1a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,13 +12,10 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
@@ -27,8 +24,10 @@ def translate(audio):
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
32
  return speech.cpu()
33
 
34
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor, VitsModel, VitsTokenizer
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="russian")
16
 
17
+ model = VitsModel.from_pretrained("facebook/mms-tts-rus")
18
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
 
 
 
19
 
20
 
21
  def translate(audio):
 
24
 
25
 
26
  def synthesise(text):
27
+ inputs = processor(text=text, return_tensors="pt")["input_ids"]
28
+ with torch.no_grad():
29
+ outputs = model(inputs)
30
+ speech = outputs["waveform"]
31
  return speech.cpu()
32
 
33