Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""HW3_ml.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1z4ht7K9pttbgWmDDnrQhqoZ6SYAiaeUe | |
""" | |
# !pip -q uninstall gradio -y | |
# !pip -q install gradio==3.50.2 | |
# !pip -q install datasets | |
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device) | |
# !pip -q install sentencepiece | |
# load text-to-speech checkpoint and speaker embeddings | |
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
processor = WhisperProcessor.from_pretrained( | |
"openai/whisper-small") | |
translator1 = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en") | |
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") | |
from transformers import VitsModel, VitsTokenizer | |
# model = pipeline("text-to-speech", model="suno/bark-small") | |
model = VitsModel.from_pretrained("facebook/mms-tts-rus") | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") | |
def translator_mul_ru(text): | |
translation = translator2(translator1(text)[0]['translation_text']) | |
return translation[0]['translation_text'] | |
def translate(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
return outputs["text"] | |
def synthesise(text): | |
translated_text = translator_mul_ru(text) | |
inputs = tokenizer(translated_text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
speech = outputs["waveform"] | |
return speech.cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
print(translated_text) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech[0] | |
title = "Cascaded STST" | |
description = """ | |
* Данная модель распознает текст на 56 языках | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"]) | |
demo.launch() | |