lectorsync / app.py
AlexanderBenady's picture
Update app.py
b7bf3f2 verified
raw
history blame
8.93 kB
import logging
import os
import warnings
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq, MarianMTModel, MarianTokenizer, AutoModelForSequenceClassification, AutoProcessor, pipeline
import torch
from pydub import AudioSegment
import gradio as gr
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", message="Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.")
warnings.filterwarnings("ignore", message="Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'.")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Preload models globally
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load all necessary models and tokenizers
summarizer_tokenizer = AutoTokenizer.from_pretrained('cranonieu2021/pegasus-on-lectures')
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("cranonieu2021/pegasus-on-lectures", torch_dtype=torch_dtype).to(device)
translator_tokenizer = MarianTokenizer.from_pretrained("sfarjebespalaia/enestranslatorforsummaries")
translator_model = MarianMTModel.from_pretrained("sfarjebespalaia/enestranslatorforsummaries", torch_dtype=torch_dtype).to(device)
classifier_tokenizer = AutoTokenizer.from_pretrained("gserafico/roberta-base-finetuned-classifier-roberta1")
classifier_model = AutoModelForSequenceClassification.from_pretrained("gserafico/roberta-base-finetuned-classifier-roberta1", torch_dtype=torch_dtype).to(device)
def transcribe_audio(audio_file_path):
try:
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device)
result = pipe(audio_file_path)
logging.info("Audio transcription completed successfully.")
return result['text']
except Exception as e:
logging.error(f"Error transcribing audio: {e}")
raise
def load_and_process_input(file_info):
file_path = file_info # Assuming it's just the path
original_filename = os.path.basename(file_path) # Extract filename from path if needed
extension = os.path.splitext(original_filename)[-1].lower()
try:
if extension == ".txt":
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
elif extension in [".mp3", ".wav"]:
if extension == ".mp3":
file_path = convert_mp3_to_wav(file_path)
text = transcribe_audio(file_path)
else:
raise ValueError("Unsupported file type provided.")
except Exception as e:
logging.error(f"Error processing input file: {e}")
raise
return text
# Ensure the convert_mp3_to_wav accepts and handles a file path correctly
def convert_mp3_to_wav(file_path):
try:
wav_file_path = file_path.replace(".mp3", ".wav")
audio = AudioSegment.from_file(file_path, format='mp3')
audio.export(wav_file_path, format="wav")
logging.info("MP3 file converted to WAV.")
return wav_file_path
except Exception as e:
logging.error(f"Error converting MP3 to WAV: {e}")
raise
def process_text(text, summarization=False, translation=False, classification=False):
results = {}
intermediate_text = text # This will hold either the original text or the summary
if summarization:
# Perform summarization
inputs = summarizer_tokenizer(intermediate_text, max_length=1024, return_tensors="pt", truncation=True)
summary_ids = summarizer_model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
summary_text = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
results['summarized_text'] = summary_text
intermediate_text = summary_text # Update intermediate text to be the summary for further processing
if translation:
# Translate the intermediate text (which could be either the original text or the summary)
tokenized_text = translator_tokenizer.prepare_seq2seq_batch([intermediate_text], return_tensors="pt")
translated = translator_model.generate(**tokenized_text)
translated_text = ' '.join(translator_tokenizer.decode(t, skip_special_tokens=True) for t in translated)
results['translated_text'] = translated_text.strip()
if classification:
# Classify the intermediate text (which could be either the original text or the summary)
inputs = classifier_tokenizer(intermediate_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = classifier_model(**inputs)
predicted_class_idx = torch.argmax(outputs.logits, dim=1).item()
labels = {
0: 'Social Sciences',
1: 'Arts',
2: 'Natural Sciences',
3: 'Business and Law',
4: 'Engineering and Technology'
}
results['classification_result'] = labels[predicted_class_idx]
return results
def display_results(results):
if 'summarized_text' in results:
print("Summarized Text:")
print(results['summarized_text'])
if 'translated_text' in results:
print("Translated Text:")
print(results['translated_text'])
if 'classification_result' in results:
print('Classification Result:')
print(f"This text is classified under: {results['classification_result']}")
def main():
print("Loading models, please wait...")
file_path = input("Enter the path to your text, mp3, or wav file: ")
if not os.path.isfile(file_path):
print("File does not exist. Please enter a valid file path.")
return
text = load_and_process_input(file_path)
print("Choose the tasks to perform:")
print("1. Summarization")
print("2. Translation")
print("3. Classification")
print("4. Summarization + Translation")
print("5. Summarization + Classification")
print("6. Translation + Classification")
print("7. Summarization + Translation + Classification")
while True:
try:
choice = int(input("Please choose your option -> "))
if choice not in range(1, 8):
raise ValueError("Please select a valid option from 1 to 7.")
break
except ValueError as e:
print(f"Invalid input: {e}. Please try again.")
summarization = choice in [1, 4, 5, 7]
translation = choice in [2, 4, 6, 7]
classification = choice in [3, 5, 6, 7]
results = process_text(text, summarization=summarization, translation=translation, classification=classification)
display_results(results)
def wrap_process_file(file_obj, tasks):
if file_obj is None:
return "Please upload a file to proceed.", "", "", ""
# Assuming file_obj is a tuple containing (temp file path, original file name)
text = load_and_process_input(file_obj)
results = process_text(text, 'Summarization' in tasks, 'Translation' in tasks, 'Classification' in tasks)
return (results.get('summarized_text', ''),
results.get('translated_text', ''),
results.get('classification_result', ''))
def create_gradio_interface(theme="huggingface"):
with gr.Blocks() as demo:
gr.Markdown("# LectorSync 1.0")
gr.Markdown("## Upload your file and select the tasks:")
with gr.Row():
file_input = gr.File(label="Upload your text, mp3, or wav file")
task_choice = gr.CheckboxGroup(["Summarization", "Translation", "Classification"], label="Select Tasks")
submit_button = gr.Button("Process")
output_summary = gr.Text(label="Summarized Text")
output_translation = gr.Text(label="Translated Text")
output_classification = gr.Text(label="Classification Result")
submit_button.click(
fn=wrap_process_file,
inputs=[file_input, task_choice],
outputs=[output_summary, output_translation, output_classification]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch()