Spaces:
No application file
No application file
Upload 3 files
Browse files- Dockerfile.txt +17 -0
- app.py +23 -0
- requirements.txt +3 -0
Dockerfile.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usar una imagen base de Python
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Establecer el directorio de trabajo en el contenedor
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copiar los archivos del proyecto
|
8 |
+
COPY . .
|
9 |
+
|
10 |
+
# Instalar las dependencias
|
11 |
+
RUN pip install -r requirements.txt
|
12 |
+
|
13 |
+
# Exponer el puerto para Gradio
|
14 |
+
EXPOSE 7860
|
15 |
+
|
16 |
+
# Comando para ejecutar la aplicaci贸n
|
17 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Cargar el modelo de Hugging Face
|
5 |
+
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
|
6 |
+
|
7 |
+
# Funci贸n para procesar el texto y devolver la emoci贸n
|
8 |
+
def predict_emotion(text):
|
9 |
+
result = emotion_classifier(text)
|
10 |
+
return result[0]['label']
|
11 |
+
|
12 |
+
# Crear la interfaz con Gradio
|
13 |
+
iface = gr.Interface(
|
14 |
+
fn=predict_emotion, # Funci贸n de predicci贸n
|
15 |
+
inputs=gr.Textbox(label="Texto"), # Entrada de texto
|
16 |
+
outputs=gr.Label(label="Emoci贸n"), # Salida de la emoci贸n detectada
|
17 |
+
title="Detector de Emociones",
|
18 |
+
description="Ingresa un texto para detectar su emoci贸n (alegr铆a, tristeza, enojo, etc.)."
|
19 |
+
)
|
20 |
+
|
21 |
+
# Ejecutar la aplicaci贸n
|
22 |
+
if __name__ == "__main__":
|
23 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|