Spaces:
Build error
Build error
Upload SCET.py
Browse files- models/SCET.py +276 -0
models/SCET.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
import numbers
|
8 |
+
|
9 |
+
# LayerNorm
|
10 |
+
|
11 |
+
def to_3d(x):
|
12 |
+
return rearrange(x, 'b c h w -> b (h w) c')
|
13 |
+
|
14 |
+
def to_4d(x,h,w):
|
15 |
+
return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)
|
16 |
+
|
17 |
+
class BiasFree_LayerNorm(nn.Module):
|
18 |
+
def __init__(self, normalized_shape):
|
19 |
+
super(BiasFree_LayerNorm, self).__init__()
|
20 |
+
if isinstance(normalized_shape, numbers.Integral):
|
21 |
+
normalized_shape = (normalized_shape,)
|
22 |
+
normalized_shape = torch.Size(normalized_shape)
|
23 |
+
|
24 |
+
assert len(normalized_shape) == 1
|
25 |
+
|
26 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
27 |
+
self.normalized_shape = normalized_shape
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
sigma = x.var(-1, keepdim=True, unbiased=False)
|
31 |
+
return x / torch.sqrt(sigma+1e-5) * self.weight
|
32 |
+
|
33 |
+
class WithBias_LayerNorm(nn.Module):
|
34 |
+
def __init__(self, normalized_shape):
|
35 |
+
super(WithBias_LayerNorm, self).__init__()
|
36 |
+
if isinstance(normalized_shape, numbers.Integral):
|
37 |
+
normalized_shape = (normalized_shape,)
|
38 |
+
normalized_shape = torch.Size(normalized_shape)
|
39 |
+
|
40 |
+
assert len(normalized_shape) == 1
|
41 |
+
|
42 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
43 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
44 |
+
self.normalized_shape = normalized_shape
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
mu = x.mean(-1, keepdim=True)
|
48 |
+
sigma = x.var(-1, keepdim=True, unbiased=False)
|
49 |
+
return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias
|
50 |
+
|
51 |
+
class LayerNorm(nn.Module):
|
52 |
+
def __init__(self, dim, LayerNorm_type):
|
53 |
+
super(LayerNorm, self).__init__()
|
54 |
+
if LayerNorm_type =='BiasFree':
|
55 |
+
self.body = BiasFree_LayerNorm(dim)
|
56 |
+
else:
|
57 |
+
self.body = WithBias_LayerNorm(dim)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
h, w = x.shape[-2:]
|
61 |
+
return to_4d(self.body(to_3d(x)), h, w)
|
62 |
+
|
63 |
+
|
64 |
+
## Gated-Dconv Feed-Forward Network (GDFN)
|
65 |
+
class GFeedForward(nn.Module):
|
66 |
+
def __init__(self, dim, ffn_expansion_factor, bias):
|
67 |
+
super(GFeedForward, self).__init__()
|
68 |
+
|
69 |
+
hidden_features = int(dim * ffn_expansion_factor)
|
70 |
+
|
71 |
+
self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)
|
72 |
+
|
73 |
+
self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
|
74 |
+
groups=hidden_features * 2, bias=bias)
|
75 |
+
|
76 |
+
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
x = self.project_in(x)
|
80 |
+
x1, x2 = self.dwconv(x).chunk(2, dim=1)
|
81 |
+
x = F.gelu(x1) * x2
|
82 |
+
x = self.project_out(x)
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
##########################################################################
|
87 |
+
## Multi-DConv Head Transposed Self-Attention (MDTA)
|
88 |
+
class Attention(nn.Module):
|
89 |
+
def __init__(self, dim, num_heads, bias):
|
90 |
+
super(Attention, self).__init__()
|
91 |
+
self.num_heads = num_heads
|
92 |
+
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
93 |
+
|
94 |
+
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
|
95 |
+
self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3, bias=bias)
|
96 |
+
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
b, c, h, w = x.shape
|
100 |
+
|
101 |
+
qkv = self.qkv_dwconv(self.qkv(x))
|
102 |
+
q, k, v = qkv.chunk(3, dim=1)
|
103 |
+
|
104 |
+
q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
|
105 |
+
k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
|
106 |
+
v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
|
107 |
+
|
108 |
+
q = torch.nn.functional.normalize(q, dim=-1)
|
109 |
+
k = torch.nn.functional.normalize(k, dim=-1)
|
110 |
+
|
111 |
+
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
112 |
+
attn = attn.softmax(dim=-1)
|
113 |
+
|
114 |
+
out = (attn @ v)
|
115 |
+
|
116 |
+
out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)
|
117 |
+
|
118 |
+
out = self.project_out(out)
|
119 |
+
return out
|
120 |
+
|
121 |
+
|
122 |
+
class TransformerBlock(nn.Module):
|
123 |
+
def __init__(self, dim=48, num_heads=8, ffn_expansion_factor=2.66, bias=False, LayerNorm_type=WithBias_LayerNorm):
|
124 |
+
super(TransformerBlock, self).__init__()
|
125 |
+
|
126 |
+
self.norm1 = LayerNorm(dim, LayerNorm_type)
|
127 |
+
self.attn = Attention(dim, num_heads, bias)
|
128 |
+
self.norm2 = LayerNorm(dim, LayerNorm_type)
|
129 |
+
self.ffn = GFeedForward(dim, ffn_expansion_factor, bias)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
x = x + self.attn(self.norm1(x))
|
133 |
+
x = x + self.ffn(self.norm2(x))
|
134 |
+
|
135 |
+
return x
|
136 |
+
|
137 |
+
|
138 |
+
class BackBoneBlock(nn.Module):
|
139 |
+
def __init__(self, num, fm, **args):
|
140 |
+
super().__init__()
|
141 |
+
self.arr = nn.ModuleList([])
|
142 |
+
for _ in range(num):
|
143 |
+
self.arr.append(fm(**args))
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
for block in self.arr:
|
147 |
+
x = block(x)
|
148 |
+
return x
|
149 |
+
|
150 |
+
|
151 |
+
class PAConv(nn.Module):
|
152 |
+
|
153 |
+
def __init__(self, nf, k_size=3):
|
154 |
+
super(PAConv, self).__init__()
|
155 |
+
self.k2 = nn.Conv2d(nf, nf, 1) # 1x1 convolution nf->nf
|
156 |
+
self.sigmoid = nn.Sigmoid()
|
157 |
+
self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) # 3x3 convolution
|
158 |
+
self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) # 3x3 convolution
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
y = self.k2(x)
|
162 |
+
y = self.sigmoid(y)
|
163 |
+
|
164 |
+
out = torch.mul(self.k3(x), y)
|
165 |
+
out = self.k4(out)
|
166 |
+
|
167 |
+
return out
|
168 |
+
|
169 |
+
|
170 |
+
class SCPA(nn.Module):
|
171 |
+
"""SCPA is modified from SCNet (Jiang-Jiang Liu et al. Improving Convolutional Networks with Self-Calibrated Convolutions. In CVPR, 2020)
|
172 |
+
Github: https://github.com/MCG-NKU/SCNet
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(self, nf, reduction=2, stride=1, dilation=1):
|
176 |
+
super(SCPA, self).__init__()
|
177 |
+
group_width = nf // reduction
|
178 |
+
|
179 |
+
self.conv1_a = nn.Conv2d(nf, group_width, kernel_size=1, bias=False)
|
180 |
+
self.conv1_b = nn.Conv2d(nf, group_width, kernel_size=1, bias=False)
|
181 |
+
|
182 |
+
self.k1 = nn.Sequential(
|
183 |
+
nn.Conv2d(
|
184 |
+
group_width, group_width, kernel_size=3, stride=stride,
|
185 |
+
padding=dilation, dilation=dilation,
|
186 |
+
bias=False)
|
187 |
+
)
|
188 |
+
|
189 |
+
self.PAConv = PAConv(group_width)
|
190 |
+
|
191 |
+
self.conv3 = nn.Conv2d(
|
192 |
+
group_width * reduction, nf, kernel_size=1, bias=False)
|
193 |
+
|
194 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
residual = x
|
198 |
+
|
199 |
+
out_a = self.conv1_a(x)
|
200 |
+
out_b = self.conv1_b(x)
|
201 |
+
out_a = self.lrelu(out_a)
|
202 |
+
out_b = self.lrelu(out_b)
|
203 |
+
|
204 |
+
out_a = self.k1(out_a)
|
205 |
+
out_b = self.PAConv(out_b)
|
206 |
+
out_a = self.lrelu(out_a)
|
207 |
+
out_b = self.lrelu(out_b)
|
208 |
+
|
209 |
+
out = self.conv3(torch.cat([out_a, out_b], dim=1))
|
210 |
+
out += residual
|
211 |
+
|
212 |
+
return out
|
213 |
+
|
214 |
+
|
215 |
+
class SCET(nn.Module):
|
216 |
+
def __init__(self, hiddenDim=32, mlpDim=128, scaleFactor=2):
|
217 |
+
super().__init__()
|
218 |
+
self.conv3 = nn.Conv2d(3, hiddenDim,
|
219 |
+
kernel_size=3, padding=1)
|
220 |
+
|
221 |
+
lamRes = torch.nn.Parameter(torch.ones(1))
|
222 |
+
lamX = torch.nn.Parameter(torch.ones(1))
|
223 |
+
self.adaptiveWeight = (lamRes, lamX)
|
224 |
+
if scaleFactor == 3:
|
225 |
+
num_heads = 7
|
226 |
+
else:
|
227 |
+
num_heads = 8
|
228 |
+
self.path1 = nn.Sequential(
|
229 |
+
BackBoneBlock(16, SCPA, nf=hiddenDim, reduction=2, stride=1, dilation=1),
|
230 |
+
BackBoneBlock(1, TransformerBlock,
|
231 |
+
dim=hiddenDim, num_heads=num_heads, ffn_expansion_factor=2.66, bias=False, LayerNorm_type=WithBias_LayerNorm),
|
232 |
+
nn.Conv2d(hiddenDim, hiddenDim, kernel_size=3, padding=1),
|
233 |
+
nn.PixelShuffle(scaleFactor),
|
234 |
+
nn.Conv2d(hiddenDim // (scaleFactor ** 2),
|
235 |
+
3, kernel_size=3, padding=1),
|
236 |
+
)
|
237 |
+
|
238 |
+
self.path2 = nn.Sequential(
|
239 |
+
nn.PixelShuffle(scaleFactor),
|
240 |
+
nn.Conv2d(hiddenDim // (scaleFactor ** 2),
|
241 |
+
3, kernel_size=3, padding=1),
|
242 |
+
)
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
x = self.conv3(x)
|
246 |
+
x1, x2 = self.path1(x), self.path2(x)
|
247 |
+
return x1 + x2
|
248 |
+
|
249 |
+
|
250 |
+
def init_weights(self, pretrained=None, strict=True):
|
251 |
+
"""Init weights for models.
|
252 |
+
Args:
|
253 |
+
pretrained (str, optional): Path for pretrained weights. If given
|
254 |
+
None, pretrained weights will not be loaded. Defaults to None.
|
255 |
+
strict (boo, optional): Whether strictly load the pretrained model.
|
256 |
+
Defaults to True.
|
257 |
+
"""
|
258 |
+
if isinstance(pretrained, str):
|
259 |
+
logger = get_root_logger()
|
260 |
+
load_checkpoint(self, pretrained, strict=strict, logger=logger)
|
261 |
+
elif pretrained is None:
|
262 |
+
pass # use default initialization
|
263 |
+
else:
|
264 |
+
raise TypeError('"pretrained" must be a str or None. '
|
265 |
+
f'But received {type(pretrained)}.')
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
if __name__ == '__main__':
|
270 |
+
|
271 |
+
from torchstat import stat
|
272 |
+
import time
|
273 |
+
import torchsummary
|
274 |
+
|
275 |
+
net = SCET(32, 128, 4).cuda()
|
276 |
+
torchsummary.summary(net, (3, 48, 48))
|