Spaces:
Build error
Build error
import gradio as gr | |
from optimum.intel.openvino import OVStableDiffusionPipeline | |
from diffusers.training_utils import set_seed | |
from diffusers import DDPMScheduler, StableDiffusionPipeline | |
import gc | |
import subprocess | |
import time | |
def create_pipeline(name): | |
if name == "valhalla/sd-pokemon-model": | |
scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, | |
beta_schedule="scaled_linear", num_train_timesteps=1000) | |
pipe = StableDiffusionPipeline.from_pretrained(name, scheduler=scheduler) | |
pipe.safety_checker = lambda images, clip_input: (images, False) | |
elif name == "stable-diffusion-pokemons-valhalla-fp32": | |
scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, | |
beta_schedule="scaled_linear", num_train_timesteps=1000) | |
pipe = OVStableDiffusionPipeline.from_pretrained(name, compile=False, scheduler=scheduler) | |
pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) | |
pipe.compile() | |
else: | |
pipe = OVStableDiffusionPipeline.from_pretrained(name, compile=False) | |
pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) | |
pipe.compile() | |
return pipe | |
pipes = { | |
"Torch fp32": "valhalla/sd-pokemon-model", #"svjack/Stable-Diffusion-Pokemon-en", | |
"OpenVINO fp32": "OpenVINO/stable-diffusion-pokemons-valhalla-fp32", #"OpenVINO/stable-diffusion-pokemons-fp32", | |
"OpenVINO 8-bit quantized": "OpenVINO/stable-diffusion-pokemons-valhalla-quantized-agressive", #"OpenVINO/stable-diffusion-pokemons-quantized-aggressive", | |
"OpenVINO merged and quantized": "OpenVINO/stable-diffusion-pokemons-valhalla-tome-quantized-agressive", #"OpenVINO/stable-diffusion-pokemons-tome-quantized-aggressive" | |
} | |
# prefetch pipelines on start | |
for v in pipes.values(): | |
pipe = create_pipeline(v) | |
del pipe | |
gc.collect() | |
print((subprocess.check_output("lscpu", shell=True).strip()).decode()) | |
def generate(prompt, option, seed): | |
pipe = create_pipeline(pipes[option]) | |
set_seed(int(seed)) | |
start_time = time.time() | |
if "Torch" in option: | |
output = pipe(prompt, num_inference_steps=50, output_type="pil", height=512, width=512) | |
else: | |
output = pipe(prompt, num_inference_steps=50, output_type="pil") | |
elapsed_time = time.time() - start_time | |
return (output.images[0], "{:10.4f}".format(elapsed_time)) | |
examples = ["cartoon bird", | |
"a drawing of a green pokemon with red eyes", | |
"plant pokemon in jungle"] | |
model_options = [option for option in pipes.keys()] | |
gr.Interface( | |
fn=generate, | |
inputs=[gr.inputs.Textbox(default="cartoon bird", label="Prompt", lines=1), | |
gr.inputs.Dropdown(choices=model_options, default=model_options[-1], label="Model version"), | |
gr.inputs.Textbox(default="42", label="Seed", lines=1) | |
], | |
outputs=[gr.outputs.Image(type="pil", label="Generated Image"), gr.outputs.Textbox(label="Inference time")], | |
title="OpenVINO-optimized Stable Diffusion", | |
description="This is the Optimum-based demo for NNCF-optimized Stable Diffusion pipeline trained on 'lambdalabs/pokemon-blip-captions' dataset and running with OpenVINO.\n" | |
"The pipeline is run using 8 vCPUs (4 cores) only.", | |
theme="huggingface", | |
).launch() |