AlexK-PL's picture
Update app.py
523eb17 verified
import tempfile
import subprocess
import time
from typing import Optional
from AinaTheme import AinaGradioTheme
import gradio as gr
import numpy as np
import torch
import os
from TTS.utils.synthesizer import Synthesizer
from dotenv import load_dotenv
torch.manual_seed(0)
np.random.seed(0)
import json
from copy import deepcopy
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
import random
random.seed(0)
torch.manual_seed(0)
np.random.seed(0)
SAMPLE_RATE = 8000
#############################################################################################################
load_dotenv()
MAX_INPUT_TEXT_LEN = int(os.environ.get("MAX_INPUT_TEXT_LEN", default=500))
# Dynamically read model files, exclude 'speakers.pth'
model_files = [f for f in os.listdir(os.getcwd()) if f.endswith('.pth') and f != 'speakers.pth']
# model_files = [f for f in os.listdir(os.path.join(os.getcwd(), 'checkpoints')) if f.endswith('.pth')]
# model_files.sort(key=lambda x: os.path.getmtime(os.path.join(os.getcwd(), x)), reverse=True)
speakers_path = "speakers.pth"
speakers_list = torch.load(speakers_path)
speakers_list = list(speakers_list.keys())
speakers_list = [speaker for speaker in speakers_list]
default_speaker_list = speakers_list #
# Filtered lists based on dataset
festcat_speakers = [s for s in speakers_list if len(s) == 3] #
google_speakers = [s for s in speakers_list if 3 < len(s) < 20] #
commonvoice_speakers = [s for s in speakers_list if len(s) > 20] #
hop_128_checkpoints = [c for c in model_files if c.split('_')[1] == "M"]
hop_96_checkpoints = [c for c in model_files if c.split('_')[1] == "reduced"]
DEFAULT_SPEAKER_ID = os.environ.get("DEFAULT_SPEAKER_ID", default="pau")
DEFAULT_CHECKPOINT = os.environ.get("DEFAULT_CHECKPOINT", default=model_files[-1])
model_config = "config.json" # by default 128 hop
# model_file = model_files[0] # change this!!
# model_path = os.path.join(os.getcwd(), model_file)
# config_path = os.path.join(os.getcwd(), "config.json")
# vocoder_path = None
# vocoder_config_path = None
# synthesizer = Synthesizer(
# model_path, config_path, speakers_path, None, vocoder_path, vocoder_config_path,
# )
def get_phonetic_transcription(text: str):
try:
result = subprocess.run(
['espeak-ng', '--ipa', '-v', 'ca', text],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=True
)
return result.stdout.strip()
except subprocess.CalledProcessError as e:
print(f"An error occurred: {e}")
return None
def tts_inference(text: str, speaker_idx: str = None, model_file: str=None):
model_path = os.path.join(os.getcwd(), model_file)
speakers_file_path = "speakers.pth"
if model_file.split('_')[1] == "M":
config_path = "config.json"
elif model_file.split('_')[1] == "reduced":
config_path = "config_hop_96.json"
else:
config_path = "config.json"
vocoder_path = None
vocoder_config_path = None
synthesizer = Synthesizer(model_path, config_path, speakers_path, None,
vocoder_path, vocoder_config_path)
# synthesize
if synthesizer is None:
raise NameError("model not found")
t1 = time.time()
wavs = synthesizer.tts(text, speaker_idx)
# print(type(wavs))
wavs_den = wavs
# return output
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
# wavs must be a list of integers
synthesizer.save_wav(wavs_den, fp)
t2 = time.time() - t1
print(round(t2, 2))
output_audio = fp.name
return output_audio
title = "🗣️ Catalan Multispeaker TTS Tester 🗣️"
description = """
1️⃣ Enter the text to synthesize.
2️⃣ Select a voice from the dropdown menu.
3️⃣ Enjoy!
"""
def submit_input(input_, speaker_id, model_chkpt):
output_audio = None
output_phonetic = None
if input_ is not None and len(input_) < MAX_INPUT_TEXT_LEN:
output_audio = tts_inference(input_, speaker_id, model_chkpt)
output_phonetic = get_phonetic_transcription(input_)
else:
gr.Warning(f"Your text exceeds the {MAX_INPUT_TEXT_LEN}-character limit.")
return output_audio, output_phonetic
def change_interactive(text):
input_state = text
if input_state.strip() != "":
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
def clean():
return (
None,
None,
)
with gr.Blocks(**AinaGradioTheme().get_kwargs()) as app:
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
gr.Markdown(description)
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
input_ = gr.Textbox(
label="Text",
value="Introdueix el text a sintetitzar.",
lines=4
)
dataset = gr.Radio(["All", "Festcat", "Google TTS", "CommonVoice"], label="Speakers Dataset",
value="All")
def update_speaker_list(dataset):
print("Updating speaker list based on dataset:", dataset)
if dataset == "Festcat":
current_speakers = festcat_speakers
elif dataset == "Google TTS":
current_speakers = google_speakers
elif dataset == "CommonVoice":
current_speakers = commonvoice_speakers
else:
current_speakers = speakers_list
return gr.update(choices=current_speakers, value=current_speakers[0])
def update_checkpoint_list(model_hop):
print("Updating checkpoint list based on model config:", model_hop)
if model_hop == "hop_size_128":
current_checkpoints = hop_128_checkpoints
# model_config = "config.json"
elif model_hop == "hop_size_96":
current_checkpoints = hop_96_checkpoints
else:
current_checkpoints = model_files
return gr.update(choices=current_checkpoints, value=current_checkpoints[0])
speaker_id = gr.Dropdown(label="Select a voice", choices=speakers_list, value=DEFAULT_SPEAKER_ID,
interactive=True)
dataset.change(fn=update_speaker_list, inputs=dataset, outputs=speaker_id)
model_hop = gr.Radio(["hop_size_128", "hop_size_96"], label="Model Type", value="hop_size_128")
model_chkpt = gr.Dropdown(label="Select a checkpoint", choices=model_files, value=DEFAULT_CHECKPOINT,
interactive=True)
model_hop.change(fn=update_checkpoint_list, inputs=model_hop, outputs=model_chkpt)
# model = gr.Dropdown(label="Select a model", choices=model_files, value=DEFAULT_MODEL_FILE_NAME)
with gr.Row():
clear_btn = gr.ClearButton(value='Clean', components=[input_])
# clear_btn = gr.Button(
# "Clean",
# )
submit_btn = gr.Button(
"Submit",
variant="primary",
)
# use_denoise = gr.Radio(choices=[("Yes", 0), ("No", 1)], value=0)
with gr.Column(variant='panel'):
output_audio = gr.Audio(label="Output", type="filepath", autoplay=True, show_share_button=False)
# output_audio_den = gr.Audio(label="Output denoised", type="filepath", autoplay=False, show_share_button=False)
output_phonetic = gr.Textbox(label="Phonetic Transcription", readonly=True)
for button in [submit_btn]: # clear_btn
input_.change(fn=change_interactive, inputs=[input_], outputs=button)
# clear_btn.click(fn=clean, inputs=[], outputs=[input_, output_audio, output_phonetic], queue=False)
submit_btn.click(fn=submit_input, inputs=[input_, speaker_id, model_chkpt], outputs=[output_audio, output_phonetic])
app.queue(concurrency_count=1, api_open=False)
app.launch(show_api=False, server_name="0.0.0.0", server_port=7860)