Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,9 @@ from diffusers import DDPMPipeline
|
|
2 |
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
|
3 |
image_pipe.to("cuda")
|
4 |
images = image_pipe().images
|
5 |
-
image_pipe
|
6 |
from diffusers import UNet2DModel
|
7 |
repo_id = "google/ddpm-church-256"
|
8 |
model = UNet2DModel.from_pretrained(repo_id)
|
9 |
-
model
|
10 |
-
model.config
|
11 |
model_random = UNet2DModel(**model.config)
|
12 |
model_random.save_pretrained("my_model")
|
13 |
model_random = UNet2DModel.from_pretrained("my_model")
|
@@ -16,19 +13,14 @@ torch.manual_seed(0)
|
|
16 |
noisy_sample = torch.randn(
|
17 |
1, model.config.in_channels, model.config.sample_size, model.config.sample_size
|
18 |
)
|
19 |
-
noisy_sample.shape
|
20 |
with torch.no_grad():
|
21 |
noisy_residual = model(sample=noisy_sample, timestep=2).sample
|
22 |
-
noisy_residual.shape
|
23 |
from diffusers import DDPMScheduler
|
24 |
scheduler = DDPMScheduler.from_config(repo_id)
|
25 |
-
scheduler.config
|
26 |
-
scheduler.save_config("my_scheduler")
|
27 |
new_scheduler = DDPMScheduler.from_config("my_scheduler")
|
28 |
less_noisy_sample = scheduler.step(
|
29 |
model_output=noisy_residual, timestep=2, sample=noisy_sample
|
30 |
).prev_sample
|
31 |
-
less_noisy_sample.shape
|
32 |
import PIL.Image
|
33 |
import numpy as np
|
34 |
def display_sample(sample, i):
|
@@ -38,7 +30,6 @@ def display_sample(sample, i):
|
|
38 |
image_pil = PIL.Image.fromarray(image_processed[0])
|
39 |
display(f"Image at step {i}")
|
40 |
display(image_pil)
|
41 |
-
model.to("cuda")
|
42 |
noisy_sample = noisy_sample.to("cuda")
|
43 |
import tqdm
|
44 |
sample = noisy_sample
|
@@ -50,7 +41,6 @@ for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
|
50 |
display_sample(sample, i + 1)
|
51 |
from diffusers import DDIMScheduler
|
52 |
scheduler = DDIMScheduler.from_config(repo_id)
|
53 |
-
scheduler.set_timesteps(num_inference_steps=50)
|
54 |
import tqdm
|
55 |
sample = noisy_sample
|
56 |
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|
|
|
2 |
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
|
3 |
image_pipe.to("cuda")
|
4 |
images = image_pipe().images
|
|
|
5 |
from diffusers import UNet2DModel
|
6 |
repo_id = "google/ddpm-church-256"
|
7 |
model = UNet2DModel.from_pretrained(repo_id)
|
|
|
|
|
8 |
model_random = UNet2DModel(**model.config)
|
9 |
model_random.save_pretrained("my_model")
|
10 |
model_random = UNet2DModel.from_pretrained("my_model")
|
|
|
13 |
noisy_sample = torch.randn(
|
14 |
1, model.config.in_channels, model.config.sample_size, model.config.sample_size
|
15 |
)
|
|
|
16 |
with torch.no_grad():
|
17 |
noisy_residual = model(sample=noisy_sample, timestep=2).sample
|
|
|
18 |
from diffusers import DDPMScheduler
|
19 |
scheduler = DDPMScheduler.from_config(repo_id)
|
|
|
|
|
20 |
new_scheduler = DDPMScheduler.from_config("my_scheduler")
|
21 |
less_noisy_sample = scheduler.step(
|
22 |
model_output=noisy_residual, timestep=2, sample=noisy_sample
|
23 |
).prev_sample
|
|
|
24 |
import PIL.Image
|
25 |
import numpy as np
|
26 |
def display_sample(sample, i):
|
|
|
30 |
image_pil = PIL.Image.fromarray(image_processed[0])
|
31 |
display(f"Image at step {i}")
|
32 |
display(image_pil)
|
|
|
33 |
noisy_sample = noisy_sample.to("cuda")
|
34 |
import tqdm
|
35 |
sample = noisy_sample
|
|
|
41 |
display_sample(sample, i + 1)
|
42 |
from diffusers import DDIMScheduler
|
43 |
scheduler = DDIMScheduler.from_config(repo_id)
|
|
|
44 |
import tqdm
|
45 |
sample = noisy_sample
|
46 |
for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
|