Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
asr = pipeline(task="automatic-speech-recognition", | |
model="openai/whisper-medium") | |
# Especificar el idioma de salida en espa帽ol | |
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(language="spanish", task="transcribe") | |
demo = gr.Blocks() | |
def transcribe_long_form(filepath): | |
if filepath is None: | |
gr.Warning("No audio found, please retry.") | |
return "" | |
output = asr( | |
filepath, | |
max_new_tokens=256, | |
chunk_length_s=30, | |
batch_size=8, | |
) | |
return output["text"] | |
ner = pipeline("ner", | |
model="mrm8488/bert-spanish-cased-finetuned-ner", | |
) | |
def get_ner(input_text): | |
if input_text is None: | |
gr.Warning("No transcription found, please retry.") | |
return {"text": "", "entities": ""} | |
output = ner(input_text) | |
return {"text": input_text, "entities": output} | |
def main(filepath): | |
transcription = transcribe_long_form(filepath) | |
ner = get_ner(transcription) | |
return transcription, ner | |
mic_transcribe = gr.Interface( | |
fn=main, | |
inputs=gr.Audio(sources="microphone", | |
type="filepath"), | |
outputs=[gr.Textbox(label="Transcription", lines=3), | |
gr.HighlightedText(label="Text with entities")], | |
title="Transcribir audio desde grabaci贸n", | |
description="Transcripci贸n de audio grabado desde micr贸fono.", | |
allow_flagging="never") | |
file_transcribe = gr.Interface( | |
fn=main, | |
inputs=gr.Audio(sources="upload", | |
type="filepath"), | |
outputs=[gr.Textbox(label="Transcription", lines=3), | |
gr.HighlightedText(label="Text with entities")], | |
title="Transcribir audio desde archivo", | |
description="Transcripci贸n a partir de un archivo de audio.", | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface( | |
[mic_transcribe, | |
file_transcribe], | |
["Transcribe Microphone", | |
"Transcribe Audio File"], | |
) | |
demo.launch() | |