AlekseyCalvin commited on
Commit
c471bf5
·
verified ·
1 Parent(s): a3643cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -126,12 +126,12 @@ def classify_gallery(flux_loras):
126
  sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
127
  return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
128
 
129
- def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
130
  """Wrapper function to handle state serialization"""
131
- return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
132
 
133
  @spaces.GPU
134
- def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
135
  """Generate image with selected LoRA"""
136
  global current_lora, pipe
137
 
@@ -181,6 +181,7 @@ def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, r
181
  image=input_image,
182
  prompt=prompt,
183
  guidance_scale=guidance_scale,
 
184
  generator=torch.Generator().manual_seed(seed),
185
  ).images[0]
186
 
@@ -291,6 +292,13 @@ with gr.Blocks(css=css) as demo:
291
  step=1,
292
  value=0,
293
  )
 
 
 
 
 
 
 
294
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
295
  guidance_scale = gr.Slider(
296
  label="Guidance Scale",
@@ -328,7 +336,7 @@ with gr.Blocks(css=css) as demo:
328
  gr.on(
329
  triggers=[run_button.click, prompt.submit],
330
  fn=infer_with_lora_wrapper,
331
- inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
332
  outputs=[result, seed, reuse_button]
333
  )
334
 
 
126
  sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
127
  return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
128
 
129
+ def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
130
  """Wrapper function to handle state serialization"""
131
+ return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, flux_loras, progress)
132
 
133
  @spaces.GPU
134
+ def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
135
  """Generate image with selected LoRA"""
136
  global current_lora, pipe
137
 
 
181
  image=input_image,
182
  prompt=prompt,
183
  guidance_scale=guidance_scale,
184
+ num_inference_steps=steps,
185
  generator=torch.Generator().manual_seed(seed),
186
  ).images[0]
187
 
 
292
  step=1,
293
  value=0,
294
  )
295
+ steps = gr.Slider(
296
+ label="Steps",
297
+ minimum=1,
298
+ maximum=40,
299
+ value=28,
300
+ step=1
301
+ )
302
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
303
  guidance_scale = gr.Slider(
304
  label="Guidance Scale",
 
336
  gr.on(
337
  triggers=[run_button.click, prompt.submit],
338
  fn=infer_with_lora_wrapper,
339
+ inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, gr_flux_loras],
340
  outputs=[result, seed, reuse_button]
341
  )
342