Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,8 @@ from diffusers import DiffusionPipeline
|
|
| 13 |
import bitsandbytes
|
| 14 |
from diffusers.quantizers import PipelineQuantizationConfig
|
| 15 |
from PIL import Image
|
| 16 |
-
from
|
|
|
|
| 17 |
from diffusers.utils import load_image
|
| 18 |
from huggingface_hub import login, hf_hub_download, HfFileSystem, ModelCard
|
| 19 |
from huggingface_hub.utils._runtime import dump_environment_info
|
|
@@ -41,7 +42,7 @@ quant_config = PipelineQuantizationConfig(
|
|
| 41 |
try:
|
| 42 |
# Set max memory usage for ZeroGPU
|
| 43 |
torch.cuda.set_per_process_memory_fraction(1.0)
|
| 44 |
-
torch.set_float32_matmul_precision("
|
| 45 |
except Exception as e:
|
| 46 |
print(f"Error setting memory usage: {e}")
|
| 47 |
|
|
@@ -52,6 +53,15 @@ pipe = FluxKontextPipeline.from_pretrained(
|
|
| 52 |
torch_dtype=torch.bfloat16
|
| 53 |
).to(DEVICE)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
|
| 56 |
|
| 57 |
with open("flux_loras.json", "r") as file:
|
|
|
|
| 13 |
import bitsandbytes
|
| 14 |
from diffusers.quantizers import PipelineQuantizationConfig
|
| 15 |
from PIL import Image
|
| 16 |
+
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
|
| 17 |
+
from diffusers import FluxKontextPipeline, DiffusionPipeline
|
| 18 |
from diffusers.utils import load_image
|
| 19 |
from huggingface_hub import login, hf_hub_download, HfFileSystem, ModelCard
|
| 20 |
from huggingface_hub.utils._runtime import dump_environment_info
|
|
|
|
| 42 |
try:
|
| 43 |
# Set max memory usage for ZeroGPU
|
| 44 |
torch.cuda.set_per_process_memory_fraction(1.0)
|
| 45 |
+
torch.set_float32_matmul_precision("medium")
|
| 46 |
except Exception as e:
|
| 47 |
print(f"Error setting memory usage: {e}")
|
| 48 |
|
|
|
|
| 53 |
torch_dtype=torch.bfloat16
|
| 54 |
).to(DEVICE)
|
| 55 |
|
| 56 |
+
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
|
| 57 |
+
config = CLIPConfig.from_pretrained(model_id)
|
| 58 |
+
config.text_config.max_position_embeddings = 248
|
| 59 |
+
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True)
|
| 60 |
+
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248)
|
| 61 |
+
pipe.tokenizer = clip_processor.tokenizer
|
| 62 |
+
pipe.text_encoder = clip_model.text_model
|
| 63 |
+
pipe.tokenizer_max_length = 248
|
| 64 |
+
pipe.text_encoder.dtype = torch.bfloat16
|
| 65 |
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
|
| 66 |
|
| 67 |
with open("flux_loras.json", "r") as file:
|