Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Update pipeline.py
Browse files- pipeline.py +333 -0
pipeline.py
CHANGED
@@ -97,6 +97,339 @@ class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
|
97 |
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
98 |
)
|
99 |
self.default_sample_size = 64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
def __call__(
|
102 |
self,
|
|
|
97 |
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
98 |
)
|
99 |
self.default_sample_size = 64
|
100 |
+
def _get_t5_prompt_embeds(
|
101 |
+
self,
|
102 |
+
prompt: Union[str, List[str]] = None,
|
103 |
+
num_images_per_prompt: int = 1,
|
104 |
+
max_sequence_length: int = 512,
|
105 |
+
device: Optional[torch.device] = None,
|
106 |
+
dtype: Optional[torch.dtype] = None,
|
107 |
+
):
|
108 |
+
device = device or self._execution_device
|
109 |
+
dtype = dtype or self.text_encoder.dtype
|
110 |
+
|
111 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
112 |
+
batch_size = len(prompt)
|
113 |
+
|
114 |
+
text_inputs = self.tokenizer_2(
|
115 |
+
prompt,
|
116 |
+
padding="max_length",
|
117 |
+
max_length=max_sequence_length,
|
118 |
+
truncation=True,
|
119 |
+
return_length=False,
|
120 |
+
return_overflowing_tokens=False,
|
121 |
+
return_tensors="pt",
|
122 |
+
)
|
123 |
+
text_input_ids = text_inputs.input_ids
|
124 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
125 |
+
|
126 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
127 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
128 |
+
logger.warning(
|
129 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
130 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
131 |
+
)
|
132 |
+
|
133 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
134 |
+
|
135 |
+
dtype = self.text_encoder_2.dtype
|
136 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
137 |
+
|
138 |
+
_, seq_len, _ = prompt_embeds.shape
|
139 |
+
|
140 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
141 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
142 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
143 |
+
|
144 |
+
return prompt_embeds
|
145 |
+
|
146 |
+
def _get_clip_prompt_embeds(
|
147 |
+
self,
|
148 |
+
prompt: Union[str, List[str]],
|
149 |
+
num_images_per_prompt: int = 1,
|
150 |
+
device: Optional[torch.device] = None,
|
151 |
+
):
|
152 |
+
device = device or self._execution_device
|
153 |
+
|
154 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
155 |
+
batch_size = len(prompt)
|
156 |
+
|
157 |
+
text_inputs = self.tokenizer(
|
158 |
+
prompt,
|
159 |
+
padding="max_length",
|
160 |
+
max_length=self.tokenizer_max_length,
|
161 |
+
truncation=True,
|
162 |
+
return_overflowing_tokens=False,
|
163 |
+
return_length=False,
|
164 |
+
return_tensors="pt",
|
165 |
+
)
|
166 |
+
|
167 |
+
text_input_ids = text_inputs.input_ids
|
168 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
169 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
170 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
171 |
+
logger.warning(
|
172 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
173 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
174 |
+
)
|
175 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
176 |
+
|
177 |
+
# Use pooled output of CLIPTextModel
|
178 |
+
prompt_embeds = prompt_embeds.pooler_output
|
179 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
180 |
+
|
181 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
182 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
183 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
184 |
+
|
185 |
+
return prompt_embeds
|
186 |
+
|
187 |
+
def encode_prompt(
|
188 |
+
self,
|
189 |
+
prompt: Union[str, List[str]],
|
190 |
+
prompt_2: Union[str, List[str]],
|
191 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
192 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
193 |
+
device: Optional[torch.device] = None,
|
194 |
+
num_images_per_prompt: int = 1,
|
195 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
196 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
197 |
+
max_sequence_length: int = 512,
|
198 |
+
lora_scale: Optional[float] = None,
|
199 |
+
):
|
200 |
+
r"""
|
201 |
+
|
202 |
+
Args:
|
203 |
+
prompt (`str` or `List[str]`, *optional*):
|
204 |
+
prompt to be encoded
|
205 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
206 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
207 |
+
used in all text-encoders
|
208 |
+
device: (`torch.device`):
|
209 |
+
torch device
|
210 |
+
num_images_per_prompt (`int`):
|
211 |
+
number of images that should be generated per prompt
|
212 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
213 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
214 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
215 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
216 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
217 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
218 |
+
lora_scale (`float`, *optional*):
|
219 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
220 |
+
"""
|
221 |
+
device = device or self._execution_device
|
222 |
+
|
223 |
+
# set lora scale so that monkey patched LoRA
|
224 |
+
# function of text encoder can correctly access it
|
225 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
226 |
+
self._lora_scale = lora_scale
|
227 |
+
|
228 |
+
# dynamically adjust the LoRA scale
|
229 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
230 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
231 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
232 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
233 |
+
|
234 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
235 |
+
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
236 |
+
|
237 |
+
if prompt_embeds is None:
|
238 |
+
prompt_2 = prompt_2 or prompt
|
239 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
240 |
+
|
241 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
242 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
243 |
+
prompt=prompt,
|
244 |
+
device=device,
|
245 |
+
num_images_per_prompt=num_images_per_prompt,
|
246 |
+
)
|
247 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
248 |
+
prompt=prompt_2,
|
249 |
+
num_images_per_prompt=num_images_per_prompt,
|
250 |
+
max_sequence_length=max_sequence_length,
|
251 |
+
device=device,
|
252 |
+
)
|
253 |
+
|
254 |
+
if self.text_encoder is not None:
|
255 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
256 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
257 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
258 |
+
|
259 |
+
if self.text_encoder_2 is not None:
|
260 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
261 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
262 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
263 |
+
|
264 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
265 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
266 |
+
|
267 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
268 |
+
|
269 |
+
def check_inputs(
|
270 |
+
self,
|
271 |
+
prompt,
|
272 |
+
prompt_2,
|
273 |
+
negative_prompt,
|
274 |
+
height,
|
275 |
+
width,
|
276 |
+
prompt_embeds=None,
|
277 |
+
pooled_prompt_embeds=None,
|
278 |
+
callback_on_step_end_tensor_inputs=None,
|
279 |
+
max_sequence_length=None,
|
280 |
+
):
|
281 |
+
if height % 8 != 0 or width % 8 != 0:
|
282 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
283 |
+
|
284 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
285 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
286 |
+
):
|
287 |
+
raise ValueError(
|
288 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
289 |
+
)
|
290 |
+
|
291 |
+
if prompt is not None and prompt_embeds is not None:
|
292 |
+
raise ValueError(
|
293 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
294 |
+
" only forward one of the two."
|
295 |
+
)
|
296 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
297 |
+
raise ValueError(
|
298 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
299 |
+
" only forward one of the two."
|
300 |
+
)
|
301 |
+
elif prompt is None and prompt_embeds is None:
|
302 |
+
raise ValueError(
|
303 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
304 |
+
)
|
305 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
306 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
307 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
308 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
309 |
+
|
310 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
311 |
+
raise ValueError(
|
312 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
313 |
+
)
|
314 |
+
|
315 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
316 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
320 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
321 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
322 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
323 |
+
|
324 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
325 |
+
|
326 |
+
latent_image_ids = latent_image_ids.reshape(
|
327 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
328 |
+
)
|
329 |
+
|
330 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
331 |
+
|
332 |
+
@staticmethod
|
333 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
334 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
335 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
336 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
337 |
+
|
338 |
+
return latents
|
339 |
+
|
340 |
+
@staticmethod
|
341 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
342 |
+
batch_size, num_patches, channels = latents.shape
|
343 |
+
|
344 |
+
height = height // vae_scale_factor
|
345 |
+
width = width // vae_scale_factor
|
346 |
+
|
347 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
348 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
349 |
+
|
350 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
351 |
+
|
352 |
+
return latents
|
353 |
+
|
354 |
+
def enable_vae_slicing(self):
|
355 |
+
r"""
|
356 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
357 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
358 |
+
"""
|
359 |
+
self.vae.enable_slicing()
|
360 |
+
|
361 |
+
def disable_vae_slicing(self):
|
362 |
+
r"""
|
363 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
364 |
+
computing decoding in one step.
|
365 |
+
"""
|
366 |
+
self.vae.disable_slicing()
|
367 |
+
|
368 |
+
def enable_vae_tiling(self):
|
369 |
+
r"""
|
370 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
371 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
372 |
+
processing larger images.
|
373 |
+
"""
|
374 |
+
self.vae.enable_tiling()
|
375 |
+
|
376 |
+
def disable_vae_tiling(self):
|
377 |
+
r"""
|
378 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
379 |
+
computing decoding in one step.
|
380 |
+
"""
|
381 |
+
self.vae.disable_tiling()
|
382 |
+
|
383 |
+
def prepare_latents(
|
384 |
+
self,
|
385 |
+
batch_size,
|
386 |
+
num_channels_latents,
|
387 |
+
height,
|
388 |
+
width,
|
389 |
+
dtype,
|
390 |
+
device,
|
391 |
+
generator,
|
392 |
+
latents=None,
|
393 |
+
):
|
394 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
395 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
396 |
+
|
397 |
+
shape = (batch_size, num_channels_latents, height, width)
|
398 |
+
|
399 |
+
if latents is not None:
|
400 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
401 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
402 |
+
|
403 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
404 |
+
raise ValueError(
|
405 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
406 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
407 |
+
)
|
408 |
+
|
409 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
410 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
411 |
+
|
412 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
413 |
+
|
414 |
+
return latents, latent_image_ids
|
415 |
+
|
416 |
+
@property
|
417 |
+
def guidance_scale(self):
|
418 |
+
return self._guidance_scale
|
419 |
+
|
420 |
+
@property
|
421 |
+
def joint_attention_kwargs(self):
|
422 |
+
return self._joint_attention_kwargs
|
423 |
+
|
424 |
+
@property
|
425 |
+
def num_timesteps(self):
|
426 |
+
return self._num_timesteps
|
427 |
+
|
428 |
+
@property
|
429 |
+
def interrupt(self):
|
430 |
+
return self._interrupt
|
431 |
+
|
432 |
+
@torch.no_grad()
|
433 |
|
434 |
def __call__(
|
435 |
self,
|