Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Commit
•
8d33af5
1
Parent(s):
1b5843f
Update custom_pipeline.py
Browse files- custom_pipeline.py +49 -2
custom_pipeline.py
CHANGED
@@ -1,8 +1,20 @@
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
4 |
-
from
|
|
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Constants for shift calculation
|
8 |
BASE_SEQ_LEN = 256
|
@@ -54,6 +66,8 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
54 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
55 |
height: Optional[int] = None,
|
56 |
width: Optional[int] = None,
|
|
|
|
|
57 |
num_inference_steps: int = 4,
|
58 |
timesteps: List[int] = None,
|
59 |
guidance_scale: float = 3.5,
|
@@ -62,6 +76,8 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
62 |
latents: Optional[torch.FloatTensor] = None,
|
63 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
65 |
output_type: Optional[str] = "pil",
|
66 |
return_dict: bool = True,
|
67 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -102,6 +118,21 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
102 |
max_sequence_length=max_sequence_length,
|
103 |
lora_scale=lora_scale,
|
104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
# 4. Prepare latent variables
|
106 |
num_channels_latents = self.transformer.config.in_channels // 4
|
107 |
latents, latent_image_ids = self.prepare_latents(
|
@@ -114,6 +145,7 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
114 |
generator,
|
115 |
latents,
|
116 |
)
|
|
|
117 |
# 5. Prepare timesteps
|
118 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
119 |
image_seq_len = latents.shape[1]
|
@@ -149,9 +181,24 @@ class FluxWithCFGPipeline(FluxPipeline):
|
|
149 |
joint_attention_kwargs=self.joint_attention_kwargs,
|
150 |
return_dict=False,
|
151 |
)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
|
154 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
155 |
torch.cuda.empty_cache()
|
156 |
|
157 |
# Final image
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
|
4 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
5 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
6 |
from PIL import Image
|
7 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
8 |
+
|
9 |
+
from diffusers.utils import is_torch_xla_available
|
10 |
+
|
11 |
+
if is_torch_xla_available():
|
12 |
+
import torch_xla.core.xla_model as xm
|
13 |
+
|
14 |
+
XLA_AVAILABLE = True
|
15 |
+
else:
|
16 |
+
XLA_AVAILABLE = False
|
17 |
+
|
18 |
|
19 |
# Constants for shift calculation
|
20 |
BASE_SEQ_LEN = 256
|
|
|
66 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
67 |
height: Optional[int] = None,
|
68 |
width: Optional[int] = None,
|
69 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
70 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
71 |
num_inference_steps: int = 4,
|
72 |
timesteps: List[int] = None,
|
73 |
guidance_scale: float = 3.5,
|
|
|
76 |
latents: Optional[torch.FloatTensor] = None,
|
77 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
78 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
79 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
80 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
81 |
output_type: Optional[str] = "pil",
|
82 |
return_dict: bool = True,
|
83 |
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
118 |
max_sequence_length=max_sequence_length,
|
119 |
lora_scale=lora_scale,
|
120 |
)
|
121 |
+
(
|
122 |
+
negative_prompt_embeds,
|
123 |
+
negative_pooled_prompt_embeds,
|
124 |
+
negative_text_ids,
|
125 |
+
) = self.encode_prompt(
|
126 |
+
prompt=negative_prompt,
|
127 |
+
prompt_2=negative_prompt_2,
|
128 |
+
prompt_embeds=negative_prompt_embeds,
|
129 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
130 |
+
device=device,
|
131 |
+
num_images_per_prompt=num_images_per_prompt,
|
132 |
+
max_sequence_length=max_sequence_length,
|
133 |
+
lora_scale=lora_scale,
|
134 |
+
)
|
135 |
+
|
136 |
# 4. Prepare latent variables
|
137 |
num_channels_latents = self.transformer.config.in_channels // 4
|
138 |
latents, latent_image_ids = self.prepare_latents(
|
|
|
145 |
generator,
|
146 |
latents,
|
147 |
)
|
148 |
+
|
149 |
# 5. Prepare timesteps
|
150 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
151 |
image_seq_len = latents.shape[1]
|
|
|
181 |
joint_attention_kwargs=self.joint_attention_kwargs,
|
182 |
return_dict=False,
|
183 |
)[0]
|
184 |
+
|
185 |
+
noise_pred_uncond = self.transformer(
|
186 |
+
hidden_states=latents,
|
187 |
+
timestep=timestep / 1000,
|
188 |
+
guidance=guidance,
|
189 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
190 |
+
encoder_hidden_states=negative_prompt_embeds,
|
191 |
+
txt_ids=negative_text_ids,
|
192 |
+
img_ids=latent_image_ids,
|
193 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
194 |
+
return_dict=False,
|
195 |
+
)[0]
|
196 |
+
|
197 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
198 |
|
199 |
+
latents_dtype = latents.dtype
|
200 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
201 |
+
# Yield intermediate result
|
202 |
torch.cuda.empty_cache()
|
203 |
|
204 |
# Final image
|