|
import torch |
|
import numpy as np |
|
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, CLIPTextModelWithProjection |
|
from diffusers import FlowMatchEulerDiscreteScheduler, AutoPipelineForImage2Image, FluxPipeline, FluxTransformer2DModel |
|
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, DiffusionPipeline |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin, SD3LoraLoaderMixin |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
from PIL import Image |
|
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxTransformer2DModel |
|
|
|
from diffusers.utils import is_torch_xla_available |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
|
|
BASE_SEQ_LEN = 256 |
|
MAX_SEQ_LEN = 4096 |
|
BASE_SHIFT = 0.5 |
|
MAX_SHIFT = 1.2 |
|
|
|
|
|
def calculate_timestep_shift(image_seq_len: int) -> float: |
|
"""Calculates the timestep shift (mu) based on the image sequence length.""" |
|
m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN) |
|
b = BASE_SHIFT - m * BASE_SEQ_LEN |
|
mu = image_seq_len * m + b |
|
return mu |
|
|
|
def prepare_timesteps( |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
mu: Optional[float] = None, |
|
) -> (torch.Tensor, int): |
|
"""Prepares the timesteps for the diffusion process.""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.") |
|
|
|
if timesteps is not None: |
|
scheduler.set_timesteps(timesteps=timesteps, device=device) |
|
elif sigmas is not None: |
|
scheduler.set_timesteps(sigmas=sigmas, device=device) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, mu=mu) |
|
|
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): |
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: T5EncoderModel, |
|
tokenizer_2: T5TokenizerFast, |
|
transformer: FluxTransformer2DModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 |
|
) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.default_sample_size = 64 |
|
r""" |
|
The Flux pipeline for text-to-image generation. |
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ |
|
|
|
Args: |
|
transformer ([`FluxTransformer2DModel`]): |
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([`T5EncoderModel`]): |
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically |
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`T5TokenizerFast`): |
|
Second Tokenizer of class |
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" |
|
_optional_components = [] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder_2: T5EncoderModel, |
|
tokenizer_2: T5TokenizerFast, |
|
transformer: FluxTransformer2DModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 |
|
) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.tokenizer_max_length = ( |
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 |
|
) |
|
self.default_sample_size = 64 |
|
|
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_inference_steps: int = 4, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
max_sequence_length: int = 300, |
|
): |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
negative_prompt, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None |
|
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids = self.encode_prompt( |
|
prompt=negative_prompt, |
|
prompt_2=negative_prompt_2, |
|
prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
negative_prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_timestep_shift(image_seq_len) |
|
timesteps, num_inference_steps = prepare_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None |
|
|
|
|
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
noise_pred_uncond = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=negative_pooled_prompt_embeds, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
txt_ids=negative_text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
return self._decode_latents_to_image(latents, height, width, output_type) |
|
self.maybe_free_model_hooks() |
|
torch.cuda.empty_cache() |
|
|
|
def _decode_latents_to_image(self, latents, height, width, output_type, vae=None): |
|
"""Decodes the given latents into an image.""" |
|
vae = vae or self.vae |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor |
|
image = vae.decode(latents, return_dict=False)[0] |
|
return self.image_processor.postprocess(image, output_type=output_type)[0] |