AlekseyCalvin's picture
Update app.py
a2aad52 verified
raw
history blame
9.95 kB
import gradio as gr
import json
import logging
import argparse
import torch
import os
from os import path
from PIL import Image
import numpy as np
import spaces
import copy
import random
import time
from typing import Any, Dict, List, Optional, Union
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, FluxTransformer2DModel, FluxPipeline, AutoencoderTiny
import safetensors.torch
from safetensors.torch import load_file
from custom_pipeline import FluxWithCFGPipeline
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
import gc
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.matmul.allow_tf32 = True
dtype = torch.bfloat16
pipe = FluxWithCFGPipeline.from_pretrained(
"ostris/OpenFLUX.1", torch_dtype=dtype
).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
pipe.to("cuda")
clipmodel = 'norm'
if clipmodel == "long":
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
config = CLIPConfig.from_pretrained(model_id)
maxtokens = 77
if clipmodel == "norm":
model_id = "zer0int/CLIP-GmP-ViT-L-14"
config = CLIPConfig.from_pretrained(model_id)
maxtokens = 77
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
config.text_config.max_position_embeddings = 77
pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = maxtokens
pipe.text_encoder.dtype = torch.bfloat16
torch.cuda.empty_cache()
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora['title'], adapter_weights=lora_scale)
pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast", adapter_weights=[1.0])
pipe.set_adapters(["fast", 'title'], adapter_weights=[1.0, lora_scale])
else:
pipe.load_lora_weights(lora_path, adapter_name=selected_lora['title'], adapter_weights=lora_scale)
pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast", adapter_weights=[1.0])
pipe.set_adapters(["fast", 'title'], adapter_weights=[1.0, lora_scale])
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
pipe.to("cpu")
pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
#pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
#pipe.set_adapters("fast")
#pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0])
#pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0)
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""",
elem_id="title",
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> SOON®'s Activist & Futurealist LoRa-stocked Img Manufactory (now running on Ostris' OpenFLUX.1 model + their Fast LoRA co-activated, + using zer0int's fine-tuned CLIP-GmP-ViT-L-14! ('normal' version w/max length of 77 tokens)) </div>"""
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob">Prephrase prompts w/: 1-2. HST style autochrome photo |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva |9. Anna Akhmatova |10. Osip Mandelshtam |11-13. Alexander Blok |14. LEN Lenin |15. Leon Trotsky |16. Rosa Luxemburg |17-30. HST |31. How2Draw a ____ |32. propaganda poster |33. TOK hybrid |34. 2004 photo |35. unexpected photo of |36. flmft |37. yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 photo |46. FilmFotos |47. ff-collage |48. vintage cover </div>"""
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Inventory",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=2.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=5)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=0.8)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue(default_concurrency_limit=None).launch(show_error=True)
app.launch()