Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import json | |
import logging | |
import argparse | |
import torch | |
import os | |
from os import path | |
from PIL import Image | |
import numpy as np | |
import spaces | |
import copy | |
import random | |
import time | |
from typing import Any, Dict, List, Optional, Union | |
from huggingface_hub import hf_hub_download | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image | |
import safetensors.torch | |
from safetensors.torch import load_file | |
from pipeline import FluxWithCFGPipeline | |
from transformers import CLIPModel, CLIPProcessor, CLIPConfig | |
import gc | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch._inductor.config.conv_1x1_as_mm = True | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.epilogue_fusion = False | |
torch._inductor.config.coordinate_descent_check_all_directions = True | |
dtype = torch.bfloat16 | |
pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype, text_encoder_3=None, tokenizer_3=None | |
).to("cuda") | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda") | |
pipe.to("cuda") | |
clipmodel = 'norm' | |
if clipmodel == "long": | |
model_id = "zer0int/LongCLIP-GmP-ViT-L-14" | |
config = CLIPConfig.from_pretrained(model_id) | |
maxtokens = 77 | |
if clipmodel == "norm": | |
model_id = "zer0int/CLIP-GmP-ViT-L-14" | |
config = CLIPConfig.from_pretrained(model_id) | |
maxtokens = 77 | |
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") | |
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) | |
config.text_config.max_position_embeddings = 77 | |
pipe.tokenizer = clip_processor.tokenizer | |
pipe.text_encoder = clip_model.text_model | |
pipe.tokenizer_max_length = maxtokens | |
pipe.text_encoder.dtype = torch.bfloat16 | |
torch.cuda.empty_cache() | |
pipe.transformer.to(memory_format=torch.channels_last) | |
pipe.vae.to(memory_format=torch.channels_last) | |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
MAX_SEED = 2**32-1 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def update_selection(evt: gr.SelectData, width, height): | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
width = 768 | |
height = 1024 | |
elif selected_lora["aspect"] == "landscape": | |
width = 1024 | |
height = 768 | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index, | |
width, | |
height, | |
) | |
def generate_image(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
negative_prompt=negative_prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
lora_scale=joint_attention_kwargs, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
return image | |
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale): | |
if negative_prompt == "": | |
negative_prompt = None | |
if selected_index is None: | |
raise gr.Error("Select a LoRA adapter square before proceeding.") | |
selected_lora = loras[selected_index] | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora["trigger_word"] | |
if(trigger_word): | |
if "trigger_position" in selected_lora: | |
if selected_lora["trigger_position"] == "prepend": | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = f"{prompt} {trigger_word}" | |
else: | |
prompt_mash = f"{trigger_word} {prompt}" | |
else: | |
prompt_mash = prompt | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
if "weights" in selected_lora: | |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], lora_scale=[1.0], adapter_weights=lora_scale) | |
else: | |
pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], lora_scale=[1.0], adapter_weights=lora_scale) | |
# Load LoRA weights | |
# with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
# if "weights" in selected_lora: | |
# pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="soon", adapter_weights=[1.0], lora_scale=[1.0]) | |
# pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], lora_scale=[1.0]) | |
# pipe.set_adapters(["fast", selected_lora["repo"]], adapter_weights=[1.0, 1.0]) | |
# else: | |
# pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="soon", adapter_weights=[1.0], lora_scale=[1.0]) | |
# pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], lora_scale=[1.0]) | |
# pipe.set_adapters(["fast", selected_lora["repo"]], adapter_weights=[1.0, 1.0]) | |
image = generate_image(prompt, negative_prompt, steps, seed, cfg_scale, width, height, lora_scale) | |
pipe.to("cpu") | |
pipe.unload_lora_weights() | |
return image, seed | |
run_lora.zerogpu = True | |
#pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast") | |
#pipe.set_adapters("fast") | |
#pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0]) | |
#pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0) | |
css = ''' | |
#gen_btn{height: 100%} | |
#title{text-align: center} | |
#title h1{font-size: 3em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.5em} | |
#gallery .grid-wrap{height: 10vh} | |
''' | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
title = gr.HTML( | |
"""<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""", | |
elem_id="title", | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>""" | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover </div>""" | |
) | |
selected_index = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt! What do you want to see?") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!") | |
with gr.Column(scale=1, elem_id="gen_column"): | |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
selected_info = gr.Markdown("") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Inventory", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery" | |
) | |
with gr.Column(scale=4): | |
result = gr.Image(label="Generated Image") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=20) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=1.0) | |
gallery.select( | |
update_selection, | |
inputs=[width, height], | |
outputs=[prompt, selected_info, selected_index, width, height] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale], | |
outputs=[result, seed] | |
) | |
app.queue(default_concurrency_limit=None).launch(show_error=True) | |
app.launch() | |