Science_topic_classifier / model_api.py
AleksBlacky's picture
initial commit
dabf7ab
raw
history blame
660 Bytes
#
#
# def make_predict(model_name_global, model_local, decode_dict, title, abstract):
# model_name_global="allenai/scibert_scivocab_uncased"
# model_local="scibert_trainer/checkpoint-2000/"
#
# tokenizer_ = AutoTokenizer.from_pretrained(model_name_global)
# tokens = tokenizer_(title + abstract, return_tensors="pt")
# model_ = AutoModelForSequenceClassification.from_pretrained(model_local)
# outs = model_(tokens.input_ids)
#
# probs = outs["logits"].softmax(dim=-1).tolist()[0]
# topic_probs = {}
# for i, p in enumerate(probs):
# if p > 0.1:
# topic_probs[decode_dict[i]] = p
# return topic_probs