Alealejandrooo commited on
Commit
da9a0aa
1 Parent(s): 80e4fa3

Update process.py

Browse files
Files changed (1) hide show
  1. process.py +28 -7
process.py CHANGED
@@ -1,16 +1,37 @@
1
  import pandas as pd
2
  import gradio as gr
3
 
 
 
 
 
 
4
 
5
- def get_lat_lon(postcodes_df, postcode_mapping):
 
 
 
 
 
 
 
 
6
 
 
 
 
7
  try:
8
-
 
 
 
 
 
9
  postcode_mapping.rename(columns={'postcode': 'Postal code'}, inplace=True)
10
 
11
  # Normalize postcodes to ensure matching and count occurrences
12
- postcodes_df['Postal code'] = postcodes_df['Postal code'].str.lower().str.replace(' ', '')
13
- postcode_counts = postcodes_df['Postal code'].value_counts().reset_index()
14
  postcode_counts.columns = ['Postal code', 'count']
15
 
16
  # Normalize the postcodes in the mapping DataFrame
@@ -25,8 +46,8 @@ def get_lat_lon(postcodes_df, postcode_mapping):
25
 
26
  # Optionally, convert the DataFrame to a dictionary if needed, or work directly with the DataFrame
27
  results = result_df.to_dict(orient='records')
28
-
29
- except:
30
- raise gr.Error('Make sure your file contains the postal codes under a column named "Postal code"')
31
 
32
  return results
 
1
  import pandas as pd
2
  import gradio as gr
3
 
4
+ def find_postcode_column(df):
5
+ # UK Gov postcode regex
6
+ postcode_pattern = r"([Gg][Ii][Rr] 0[Aa]{2})|((([A-Za-z][0-9]{1,2})|(([A-Za-z][A-Ha-hJ-Yj-y][0-9]{1,2})|(([A-Za-z][0-9][A-Za-z])|([A-Za-z][A-Ha-hJ-Yj-y][0-9][A-Za-z]?))))\s?[0-9][A-Za-z]{2})"
7
+ max_count = 0
8
+ postcode_column = None
9
 
10
+ for column in df.columns:
11
+ # Count matches of the postcode pattern in each column
12
+ matches = df[column].astype(str).str.match(postcode_pattern)
13
+ valid_count = matches.sum() # Sum of True values indicating valid postcodes
14
+
15
+ # Select the column with the maximum count of valid postcodes
16
+ if valid_count > max_count:
17
+ max_count = valid_count
18
+ postcode_column = column
19
 
20
+ return postcode_column
21
+
22
+ def get_lat_lon(postcodes_df, postcode_mapping):
23
  try:
24
+ # Attempt to identify the postcode column dynamically
25
+ postcode_column = find_postcode_column(postcodes_df)
26
+ if not postcode_column:
27
+ raise ValueError("No valid postcode column found")
28
+
29
+ # Rename columns for consistency
30
  postcode_mapping.rename(columns={'postcode': 'Postal code'}, inplace=True)
31
 
32
  # Normalize postcodes to ensure matching and count occurrences
33
+ postcodes_df[postcode_column] = postcodes_df[postcode_column].str.lower().str.replace(' ', '')
34
+ postcode_counts = postcodes_df[postcode_column].value_counts().reset_index()
35
  postcode_counts.columns = ['Postal code', 'count']
36
 
37
  # Normalize the postcodes in the mapping DataFrame
 
46
 
47
  # Optionally, convert the DataFrame to a dictionary if needed, or work directly with the DataFrame
48
  results = result_df.to_dict(orient='records')
49
+
50
+ except Exception as e:
51
+ raise Exception("Error processing postal codes: " + str(e))
52
 
53
  return results